Noor Mohammed, R. W. Jackson, Jeremy Gummeson, S. Lee
{"title":"Wireless Intra-Body Power Transfer via Capacitively Coupled Link","authors":"Noor Mohammed, R. W. Jackson, Jeremy Gummeson, S. Lee","doi":"10.1109/BSN56160.2022.9928464","DOIUrl":null,"url":null,"abstract":"Over the past couple of years, the Capacitive Intra-Body Power Transfer (C-IBPT) technology, which uses the human body as a wireless power transfer medium via capacitive links, has received tremendous attention in the field as a potential solution to support a network of battery-free body sensors. However, circuit modeling of C-IBPT systems, despite its importance in supporting the reliable operation of battery-free body sensors, has been significantly understudied in the field. This paper proposes a finite element model (FEM) and equivalent linear circuit models to estimate path loss and inter-electrode capacitance of a C-IBPT system. As a demonstrative example, the model approximates a typical human forearm (from wrist to elbow) and allows for investigation of the transmission loss between a skin-coupled power transmitter and a receiver in the electro-quasistatic domain. The computed transmission loss from the proposed model is further validated against experimental measurements obtained from five healthy human subjects using a wearable 40 MHz radio frequency (RF) transmitter and an isolated power receiver system in a laboratory environment. The preliminary experimental data show an approximate 40 dB transmission loss within 10 cm body channel length for the parallel plate electrode configuration with dimensions of 30 mm ×40 mm. The simulation finding shows a lower transmission loss of 35 dB and 13.5 fF coupling capacitance across a 10 cm body channel.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past couple of years, the Capacitive Intra-Body Power Transfer (C-IBPT) technology, which uses the human body as a wireless power transfer medium via capacitive links, has received tremendous attention in the field as a potential solution to support a network of battery-free body sensors. However, circuit modeling of C-IBPT systems, despite its importance in supporting the reliable operation of battery-free body sensors, has been significantly understudied in the field. This paper proposes a finite element model (FEM) and equivalent linear circuit models to estimate path loss and inter-electrode capacitance of a C-IBPT system. As a demonstrative example, the model approximates a typical human forearm (from wrist to elbow) and allows for investigation of the transmission loss between a skin-coupled power transmitter and a receiver in the electro-quasistatic domain. The computed transmission loss from the proposed model is further validated against experimental measurements obtained from five healthy human subjects using a wearable 40 MHz radio frequency (RF) transmitter and an isolated power receiver system in a laboratory environment. The preliminary experimental data show an approximate 40 dB transmission loss within 10 cm body channel length for the parallel plate electrode configuration with dimensions of 30 mm ×40 mm. The simulation finding shows a lower transmission loss of 35 dB and 13.5 fF coupling capacitance across a 10 cm body channel.