{"title":"Symbolic rule extraction with a scaled conjugate gradient version of CLARION","authors":"T. Falas, A. Stafylopatis","doi":"10.1109/IJCNN.2005.1555962","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid intelligent system made up of two modules. The bottom sub-symbolic module is a multi-layer feed-forward neural network trained by a modified Q-learning methodology that employs the scaled conjugate gradient algorithm. The top module is a symbolic system (implemented with a neural network built on-line) where rules are extracted from the bottom module during training, in a fashion similar to the CLARION system. The two modules augment each other in an effort to obtain a better performance than both of the modules acting alone in solving a problem. The originality of this work lies in the use of the advanced scaled conjugate learning algorithm in such a hybrid system. It is expected that the use of this algorithm would provide significant improvements in the performance of the overall system and also make it less dependent on user-selected parameters. This paper emphasises the implementation details, since the system is currently under development, rather that concrete experimental results.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a hybrid intelligent system made up of two modules. The bottom sub-symbolic module is a multi-layer feed-forward neural network trained by a modified Q-learning methodology that employs the scaled conjugate gradient algorithm. The top module is a symbolic system (implemented with a neural network built on-line) where rules are extracted from the bottom module during training, in a fashion similar to the CLARION system. The two modules augment each other in an effort to obtain a better performance than both of the modules acting alone in solving a problem. The originality of this work lies in the use of the advanced scaled conjugate learning algorithm in such a hybrid system. It is expected that the use of this algorithm would provide significant improvements in the performance of the overall system and also make it less dependent on user-selected parameters. This paper emphasises the implementation details, since the system is currently under development, rather that concrete experimental results.