A Survey of Interestingness Measures for Association Rules

Yuejin Zhang, Lingling Zhang, G. Nie, Yong Shi
{"title":"A Survey of Interestingness Measures for Association Rules","authors":"Yuejin Zhang, Lingling Zhang, G. Nie, Yong Shi","doi":"10.1109/BIFE.2009.110","DOIUrl":null,"url":null,"abstract":"Association mining can generate large quantity of rules, most of which are not interesting to the user. Interestingness measures are used to find the truly interesting rules. This paper presents a review of the available literature on the various interestingness measures, which generally can be divided into two categories: objective measures based on the statistical strengths or properties of the discovered rules, and subjective measures which are derived from the user’s beliefs or expectations of their particular problem domain. We sum up twelve measure criteria which are concerned by many researchers and evaluate the strengths and weaknesses of the two categories of measures. At last, we pointed out that the combination of objective and subjective measures would be a possible research direction.","PeriodicalId":133724,"journal":{"name":"2009 International Conference on Business Intelligence and Financial Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Business Intelligence and Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIFE.2009.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Association mining can generate large quantity of rules, most of which are not interesting to the user. Interestingness measures are used to find the truly interesting rules. This paper presents a review of the available literature on the various interestingness measures, which generally can be divided into two categories: objective measures based on the statistical strengths or properties of the discovered rules, and subjective measures which are derived from the user’s beliefs or expectations of their particular problem domain. We sum up twelve measure criteria which are concerned by many researchers and evaluate the strengths and weaknesses of the two categories of measures. At last, we pointed out that the combination of objective and subjective measures would be a possible research direction.
关联规则的兴趣度度量研究
关联挖掘可以生成大量的规则,其中大部分是用户不感兴趣的。趣味性度量是用来发现真正有趣的规则。本文回顾了各种有趣度度量的现有文献,通常可分为两类:基于所发现规则的统计优势或属性的客观度量,以及源自用户对其特定问题领域的信念或期望的主观度量。本文总结了目前研究人员比较关注的12种测量标准,并对两类测量标准的优缺点进行了评价。最后,指出客观与主观相结合是一个可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信