A variational approach to multi-modal image matching

C. Chefd'Hotel, G. Hermosillo, O. Faugeras
{"title":"A variational approach to multi-modal image matching","authors":"C. Chefd'Hotel, G. Hermosillo, O. Faugeras","doi":"10.1109/VLSM.2001.938877","DOIUrl":null,"url":null,"abstract":"We address the problem of nonparametric multi-modal image matching. We propose a generic framework which relies on a global variational formulation and show its versatility through three different multi-modal registration methods: supervised registration by joint intensity learning, maximization of the mutual information and maximization of the correlation ratio. Regularization is performed by using a functional borrowed from linear elasticity theory. We also consider a geometry-driven regularization method. Experiments on synthetic images and preliminary results on the realignment of MRI datasets are presented.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

Abstract

We address the problem of nonparametric multi-modal image matching. We propose a generic framework which relies on a global variational formulation and show its versatility through three different multi-modal registration methods: supervised registration by joint intensity learning, maximization of the mutual information and maximization of the correlation ratio. Regularization is performed by using a functional borrowed from linear elasticity theory. We also consider a geometry-driven regularization method. Experiments on synthetic images and preliminary results on the realignment of MRI datasets are presented.
多模态图像匹配的变分方法
我们解决了非参数多模态图像匹配问题。我们提出了一个基于全局变分公式的通用框架,并通过三种不同的多模态配准方法展示了它的通用性:联合强度学习的监督配准、互信息最大化和相关比最大化。正则化是通过借用线性弹性理论的函数来实现的。我们还考虑了一种几何驱动的正则化方法。在合成图像上进行了实验,并给出了MRI数据集重新排列的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信