{"title":"A variational approach to multi-modal image matching","authors":"C. Chefd'Hotel, G. Hermosillo, O. Faugeras","doi":"10.1109/VLSM.2001.938877","DOIUrl":null,"url":null,"abstract":"We address the problem of nonparametric multi-modal image matching. We propose a generic framework which relies on a global variational formulation and show its versatility through three different multi-modal registration methods: supervised registration by joint intensity learning, maximization of the mutual information and maximization of the correlation ratio. Regularization is performed by using a functional borrowed from linear elasticity theory. We also consider a geometry-driven regularization method. Experiments on synthetic images and preliminary results on the realignment of MRI datasets are presented.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125
Abstract
We address the problem of nonparametric multi-modal image matching. We propose a generic framework which relies on a global variational formulation and show its versatility through three different multi-modal registration methods: supervised registration by joint intensity learning, maximization of the mutual information and maximization of the correlation ratio. Regularization is performed by using a functional borrowed from linear elasticity theory. We also consider a geometry-driven regularization method. Experiments on synthetic images and preliminary results on the realignment of MRI datasets are presented.