GPU implementations of object detection using HOG features and deformable models

Manato Hirabayashi, S. Kato, M. Edahiro, K. Takeda, Taiki Kawano, S. Mita
{"title":"GPU implementations of object detection using HOG features and deformable models","authors":"Manato Hirabayashi, S. Kato, M. Edahiro, K. Takeda, Taiki Kawano, S. Mita","doi":"10.1109/CPSNA.2013.6614255","DOIUrl":null,"url":null,"abstract":"Vision-based object detection using camera sensors is an essential piece of perception for autonomous vehicles. Various combinations of features and models can be applied to increase the quality and the speed of object detection. A well-known approach uses histograms of oriented gradients (HOG) with deformable models to detect a car in an image [15]. A major challenge of this approach can be found in computational cost introducing a real-time constraint relevant to the real world. In this paper, we present an implementation technique using graphics processing units (GPUs) to accelerate computations of scoring similarity of the input image and the pre-defined models. Our implementation considers the entire program structure as well as the specific algorithm for practical use. We apply the presented technique to the real-world vehicle detection program and demonstrate that our implementation using commodity GPUs can achieve speedups of 3x to 5x in frame-rate over sequential and multithreaded implementations using traditional CPUs.","PeriodicalId":212743,"journal":{"name":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPSNA.2013.6614255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Vision-based object detection using camera sensors is an essential piece of perception for autonomous vehicles. Various combinations of features and models can be applied to increase the quality and the speed of object detection. A well-known approach uses histograms of oriented gradients (HOG) with deformable models to detect a car in an image [15]. A major challenge of this approach can be found in computational cost introducing a real-time constraint relevant to the real world. In this paper, we present an implementation technique using graphics processing units (GPUs) to accelerate computations of scoring similarity of the input image and the pre-defined models. Our implementation considers the entire program structure as well as the specific algorithm for practical use. We apply the presented technique to the real-world vehicle detection program and demonstrate that our implementation using commodity GPUs can achieve speedups of 3x to 5x in frame-rate over sequential and multithreaded implementations using traditional CPUs.
使用HOG特征和可变形模型的目标检测的GPU实现
使用相机传感器进行基于视觉的物体检测是自动驾驶汽车感知的重要组成部分。可以应用各种特征和模型的组合来提高目标检测的质量和速度。一种众所周知的方法是使用具有可变形模型的定向梯度直方图(HOG)来检测图像[15]中的汽车。这种方法的一个主要挑战是计算成本,引入了与现实世界相关的实时约束。在本文中,我们提出了一种使用图形处理单元(gpu)来加速输入图像和预定义模型的相似性评分计算的实现技术。我们的实现考虑了整个程序结构以及实际使用的具体算法。我们将所提出的技术应用于现实世界的车辆检测程序,并证明我们使用商用gpu的实现可以比使用传统cpu的顺序和多线程实现实现的帧速率提高3到5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信