Gray-dynamic EKF for mobile robot SLAM in indoor environment

Peng-Cheng Wang, Qibin Zhang, Zonghai Chen
{"title":"Gray-dynamic EKF for mobile robot SLAM in indoor environment","authors":"Peng-Cheng Wang, Qibin Zhang, Zonghai Chen","doi":"10.1109/RAM.2013.6758557","DOIUrl":null,"url":null,"abstract":"The Gray-dynamic EKF (GEKF) algorithm is proposed to estimate the states of a mobile robot in an indoor environment. First, the gray prediction theory is adopted to predict the states of a mobile robot and the feature positions in the environment; next, based on the predictions, a mobile robot system model is built dynamically; then, the GEKF is used to estimate the mobile robot states and the feature positions. Experimental results show that the GEKF can achieve almost the same estimation accuracy with EKF, while without the need of a fixed system model. To improve the head direction estimation accuracy of the mobile robot, a head direction match algorithm is proposed, and relatively better results are shown by experiments.","PeriodicalId":287085,"journal":{"name":"2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2013.6758557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Gray-dynamic EKF (GEKF) algorithm is proposed to estimate the states of a mobile robot in an indoor environment. First, the gray prediction theory is adopted to predict the states of a mobile robot and the feature positions in the environment; next, based on the predictions, a mobile robot system model is built dynamically; then, the GEKF is used to estimate the mobile robot states and the feature positions. Experimental results show that the GEKF can achieve almost the same estimation accuracy with EKF, while without the need of a fixed system model. To improve the head direction estimation accuracy of the mobile robot, a head direction match algorithm is proposed, and relatively better results are shown by experiments.
室内环境下移动机器人SLAM的灰色动态EKF
针对移动机器人在室内环境下的状态估计问题,提出了灰色动态EKF (GEKF)算法。首先,采用灰色预测理论预测移动机器人在环境中的状态和特征位置;然后,根据预测动态建立移动机器人系统模型;然后,利用GEKF估计移动机器人的状态和特征位置。实验结果表明,在不需要固定系统模型的情况下,GEKF可以达到与EKF几乎相同的估计精度。为了提高移动机器人的头部方向估计精度,提出了一种头部方向匹配算法,并通过实验取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信