Approximate Greatest Common Divisors of polynomials and the optimal solution

N. Karcanias, S. Fatouros
{"title":"Approximate Greatest Common Divisors of polynomials and the optimal solution","authors":"N. Karcanias, S. Fatouros","doi":"10.23919/ECC.2007.7068384","DOIUrl":null,"url":null,"abstract":"The Greatest Common Divisor (GCD) of many polynomials is central to linear systems problems and its computation is a nongeneric problem. Defining the notion of “approximate” GCD, measuring and computing the strength of the approximation and determining the “best approximation” are challenging problems. This paper uses the Sylvester Resultant representation of the GCD of many polynomials, and the corresponding factorisation of generalised resultants. We define the notion of “approximate GCD” and then indicate how to compute the “optimal approximate GCD” of a given order, or degree and the corresponding order of the approximation. This optimisation problem is defined as a distance problem in a projective space and it is shown to have an analytic solution.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Greatest Common Divisor (GCD) of many polynomials is central to linear systems problems and its computation is a nongeneric problem. Defining the notion of “approximate” GCD, measuring and computing the strength of the approximation and determining the “best approximation” are challenging problems. This paper uses the Sylvester Resultant representation of the GCD of many polynomials, and the corresponding factorisation of generalised resultants. We define the notion of “approximate GCD” and then indicate how to compute the “optimal approximate GCD” of a given order, or degree and the corresponding order of the approximation. This optimisation problem is defined as a distance problem in a projective space and it is shown to have an analytic solution.
多项式的近似最大公约数及其最优解
许多多项式的最大公约数(GCD)是线性系统问题的核心,它的计算是一个非一般问题。定义“近似”GCD的概念、测量和计算近似的强度以及确定“最佳近似”是具有挑战性的问题。本文使用了许多多项式的GCD的Sylvester结式表示,以及相应的广义结式分解。我们定义了“近似GCD”的概念,然后说明了如何计算给定阶或度的“最优近似GCD”以及相应的近似阶。该优化问题被定义为射影空间中的距离问题,并被证明具有解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信