Big Data Summarization Using Novel Clustering Algorithm and Semantic Feature Approach

Shilpa G. Kolte, J. Bakal
{"title":"Big Data Summarization Using Novel Clustering Algorithm and Semantic Feature Approach","authors":"Shilpa G. Kolte, J. Bakal","doi":"10.4018/IJRSDA.2017070108","DOIUrl":null,"url":null,"abstract":"This paper proposes a big data i.e., documents, texts summarization method using proposed clustering and semantic features. This paper proposes a novel clustering algorithm which is used for big data summarization. The proposed system works in four phases and provides a modular implementation of multiple documents summarization. The experimental results using Iris dataset show that the proposed clustering algorithm performs better than K-means and K-medodis algorithm. The performance of big data i.e., documents, texts summarization is evaluated using Australian legal cases from the Federal Court of Australia FCA database. The experimental results demonstrate that the proposed method can summarize big data document superior as compared with existing systems.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2017070108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper proposes a big data i.e., documents, texts summarization method using proposed clustering and semantic features. This paper proposes a novel clustering algorithm which is used for big data summarization. The proposed system works in four phases and provides a modular implementation of multiple documents summarization. The experimental results using Iris dataset show that the proposed clustering algorithm performs better than K-means and K-medodis algorithm. The performance of big data i.e., documents, texts summarization is evaluated using Australian legal cases from the Federal Court of Australia FCA database. The experimental results demonstrate that the proposed method can summarize big data document superior as compared with existing systems.
基于新型聚类算法和语义特征的大数据摘要
本文提出了一种利用所提聚类和语义特征对大数据即文档、文本进行摘要的方法。提出了一种用于大数据摘要的聚类算法。提出的系统分四个阶段工作,并提供多文档摘要的模块化实现。Iris数据集的实验结果表明,本文提出的聚类算法优于K-means和K-medodis算法。使用来自澳大利亚联邦法院FCA数据库的澳大利亚法律案例来评估大数据(即文件、文本摘要)的性能。实验结果表明,与现有系统相比,所提出的方法在大数据文档的总结方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信