C. R. Johnson, H. Lee, J. LeBlanc, T. Endres, R. Casas, E. Tai, Z. Reznic, W. Meyer
{"title":"On fractionally-spaced equalizer design for digital microwave radio channels","authors":"C. R. Johnson, H. Lee, J. LeBlanc, T. Endres, R. Casas, E. Tai, Z. Reznic, W. Meyer","doi":"10.1109/ACSSC.1995.540558","DOIUrl":null,"url":null,"abstract":"Advances in blind identification of fractionally-spaced models for digital communication channels and blind fractionally-spaced equalizer adaptation rely on the assumption that the time span chosen for the fractionally-spaced equalizer exceeds that of the channel. This paper considers time-domain design formulas minimizing the mean-squared symbol recovery error achieved by a finite-length FIR fractionally-spaced equalizer with a time span shorter than the channel impulse response time span for white zero-mean QAM sources in the presence of white zero-mean channel noise. For minimum mean-squared error designs the symbol error rates achievable are plotted versus the ratio of the source variance to the channel noise variance (with the channel model power normalized to achieve a received signal of unit variance) for different fractionally-spaced equalizer lengths on 64-QAM for several T/2-spaced channel models derived from experimental data. Our intent is to fuel the ongoing debate about fractionally-spaced equalizer length selection.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Advances in blind identification of fractionally-spaced models for digital communication channels and blind fractionally-spaced equalizer adaptation rely on the assumption that the time span chosen for the fractionally-spaced equalizer exceeds that of the channel. This paper considers time-domain design formulas minimizing the mean-squared symbol recovery error achieved by a finite-length FIR fractionally-spaced equalizer with a time span shorter than the channel impulse response time span for white zero-mean QAM sources in the presence of white zero-mean channel noise. For minimum mean-squared error designs the symbol error rates achievable are plotted versus the ratio of the source variance to the channel noise variance (with the channel model power normalized to achieve a received signal of unit variance) for different fractionally-spaced equalizer lengths on 64-QAM for several T/2-spaced channel models derived from experimental data. Our intent is to fuel the ongoing debate about fractionally-spaced equalizer length selection.