{"title":"Image-space illumination for augmented reality in dynamic environments","authors":"Lukas Gruber, Jonathan Ventura, D. Schmalstieg","doi":"10.1109/VR.2015.7223334","DOIUrl":null,"url":null,"abstract":"We present an efficient approach for probeless light estimation and coherent rendering of Augmented Reality in dynamic scenes. This approach can handle dynamically changing scene geometry and dynamically changing light sources in real time with a single mobile RGB-D sensor and without relying on an invasive lightprobe. We jointly filter both in-view dynamic geometry and outside-view static geometry. The resulting reconstruction provides the input for efficient global illumination computation in image-space. We demonstrate that our approach can deliver state-of-the-art Augmented Reality rendering effects for scenes that are more scalable and more dynamic than previous work.","PeriodicalId":231501,"journal":{"name":"2015 IEEE Virtual Reality (VR)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2015.7223334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We present an efficient approach for probeless light estimation and coherent rendering of Augmented Reality in dynamic scenes. This approach can handle dynamically changing scene geometry and dynamically changing light sources in real time with a single mobile RGB-D sensor and without relying on an invasive lightprobe. We jointly filter both in-view dynamic geometry and outside-view static geometry. The resulting reconstruction provides the input for efficient global illumination computation in image-space. We demonstrate that our approach can deliver state-of-the-art Augmented Reality rendering effects for scenes that are more scalable and more dynamic than previous work.