Autotuning of OpenCL Kernels with Global Optimizations

ANDARE '17 Pub Date : 2017-09-09 DOI:10.1145/3152821.3152877
J. Filipovič, Filip Petrovic, S. Benkner
{"title":"Autotuning of OpenCL Kernels with Global Optimizations","authors":"J. Filipovič, Filip Petrovic, S. Benkner","doi":"10.1145/3152821.3152877","DOIUrl":null,"url":null,"abstract":"Autotuning is an important method for automatically exploring code optimizations. It may target low-level code optimizations, such as memory blocking, loop unrolling or memory prefetching, as well as high-level optimizations, such as placement of computation kernels on proper hardware devices, optimizing memory transfers between nodes or between accelerators and main memory.\n In this paper, we introduce an autotuning method, which extends state-of-the-art low-level tuning of OpenCL or CUDA kernels towards more complex optimizations. More precisely, we introduce a Kernel Tuning Toolkit (KTT), which implements inter-kernel global optimizations, allowing to tune parameters affecting multiple kernels or also the host code. We demonstrate on practical examples, that with global kernel optimizations we are able to explore tuning options that are not possible if kernels are tuned separately. Moreover, our tuning strategies can take into account numerical accuracy across multiple kernel invocations and search for implementations within specific numerical error bounds.","PeriodicalId":227417,"journal":{"name":"ANDARE '17","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANDARE '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152821.3152877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Autotuning is an important method for automatically exploring code optimizations. It may target low-level code optimizations, such as memory blocking, loop unrolling or memory prefetching, as well as high-level optimizations, such as placement of computation kernels on proper hardware devices, optimizing memory transfers between nodes or between accelerators and main memory. In this paper, we introduce an autotuning method, which extends state-of-the-art low-level tuning of OpenCL or CUDA kernels towards more complex optimizations. More precisely, we introduce a Kernel Tuning Toolkit (KTT), which implements inter-kernel global optimizations, allowing to tune parameters affecting multiple kernels or also the host code. We demonstrate on practical examples, that with global kernel optimizations we are able to explore tuning options that are not possible if kernels are tuned separately. Moreover, our tuning strategies can take into account numerical accuracy across multiple kernel invocations and search for implementations within specific numerical error bounds.
使用全局优化的OpenCL内核的自动调优
自动调优是自动探索代码优化的重要方法。它可以针对低级代码优化,例如内存阻塞、循环展开或内存预取,也可以针对高级优化,例如在适当的硬件设备上放置计算内核,优化节点之间或加速器与主存之间的内存传输。在本文中,我们介绍了一种自动调优方法,它将OpenCL或CUDA内核的最先进的低级调优扩展到更复杂的优化。更准确地说,我们介绍了一个内核调优工具包(KTT),它实现了内核间的全局优化,允许调优影响多个内核或主机代码的参数。我们通过实际示例演示,通过全局内核优化,我们能够探索单独调优内核时无法实现的调优选项。此外,我们的调优策略可以考虑跨多个内核调用的数值精度,并在特定的数值误差范围内搜索实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信