SVD-based visualisation and approximation for time series data in smart energy systems

Abdolrahman Khoshrou, A. Dorsman, E. Pauwels
{"title":"SVD-based visualisation and approximation for time series data in smart energy systems","authors":"Abdolrahman Khoshrou, A. Dorsman, E. Pauwels","doi":"10.1109/ISGTEurope.2017.8260303","DOIUrl":null,"url":null,"abstract":"Many time series in smart energy systems exhibit two different timescales. On the one hand there are patterns linked to daily human activities. On the other hand, there are relatively slow trends linked to seasonal variations. In this paper we interpret these time series as matrices, to be visualized as images. This approach has two advantages: First of all, interpreting such time series as images enables one to visually integrate across the image and makes it therefore easier to spot subtle or faint features. Second, the matrix interpretation also grants elucidation of the underlying structure using well-established matrix decomposition methods. We will illustrate both these aspects for data obtained from the German day-ahead market.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many time series in smart energy systems exhibit two different timescales. On the one hand there are patterns linked to daily human activities. On the other hand, there are relatively slow trends linked to seasonal variations. In this paper we interpret these time series as matrices, to be visualized as images. This approach has two advantages: First of all, interpreting such time series as images enables one to visually integrate across the image and makes it therefore easier to spot subtle or faint features. Second, the matrix interpretation also grants elucidation of the underlying structure using well-established matrix decomposition methods. We will illustrate both these aspects for data obtained from the German day-ahead market.
智能能源系统中基于svd的时间序列数据可视化与逼近
智能能源系统中的许多时间序列表现出两种不同的时间尺度。一方面,这些模式与人类的日常活动有关。另一方面,与季节变化相关的趋势相对缓慢。在本文中,我们将这些时间序列解释为矩阵,并将其可视化为图像。这种方法有两个优点:首先,将这样的时间序列解释为图像使人们能够在视觉上整合整个图像,因此更容易发现细微或模糊的特征。其次,矩阵解释还允许使用完善的矩阵分解方法阐明底层结构。我们将通过从德国日前市场获得的数据来说明这两个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信