Parallel SIMD - A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types

Srinivas Yadav, Nikunj Gupta, Auriane Reverdell, H. Kaiser
{"title":"Parallel SIMD - A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types","authors":"Srinivas Yadav, Nikunj Gupta, Auriane Reverdell, H. Kaiser","doi":"10.1109/ESPM254806.2021.00008","DOIUrl":null,"url":null,"abstract":"Recent additions to the C++ standard and ongoing standardization efforts aim to add data-parallel types to the C++ standard library. This enables the use of vectorization techniques in existing C++ codes without having to rely on the C++ compiler’s abilities to auto-vectorize the code’s execution. The integration of the existing parallel algorithms with these new data-parallel types opens up a new way of speeding up existing codes with minimal effort. Today, only very little implementation experience exists for potential data-parallel execution of the standard parallel algorithms. In this paper, we report on experiences and performance analysis results for our implementation of two new data-parallel execution policies usable with HPX’s parallel algorithms module: simd and par_simd. We utilize the new experimental implementation of data-parallel types provided by recent versions of the GCC and Clang C++ standard libraries. The benchmark results collected from artificial tests and real-world codes presented in this paper are very promising. Compared to sequenced execution, we report on speed-ups of more than three orders of magnitude when executed using the newly implemented data-parallel execution policy par_simd with HPX’s parallel algorithms. We also report that our implementation is performance portable across different compute architectures (x64 – Intel and AMD, and Arm), using different vectorization extensions (AVX2, AVX512, and NEON128).","PeriodicalId":155761,"journal":{"name":"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPM254806.2021.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recent additions to the C++ standard and ongoing standardization efforts aim to add data-parallel types to the C++ standard library. This enables the use of vectorization techniques in existing C++ codes without having to rely on the C++ compiler’s abilities to auto-vectorize the code’s execution. The integration of the existing parallel algorithms with these new data-parallel types opens up a new way of speeding up existing codes with minimal effort. Today, only very little implementation experience exists for potential data-parallel execution of the standard parallel algorithms. In this paper, we report on experiences and performance analysis results for our implementation of two new data-parallel execution policies usable with HPX’s parallel algorithms module: simd and par_simd. We utilize the new experimental implementation of data-parallel types provided by recent versions of the GCC and Clang C++ standard libraries. The benchmark results collected from artificial tests and real-world codes presented in this paper are very promising. Compared to sequenced execution, we report on speed-ups of more than three orders of magnitude when executed using the newly implemented data-parallel execution policy par_simd with HPX’s parallel algorithms. We also report that our implementation is performance portable across different compute architectures (x64 – Intel and AMD, and Arm), using different vectorization extensions (AVX2, AVX512, and NEON128).
并行SIMD——使用c++数据并行类型实现免费加速的基于策略的解决方案
最近对c++标准的补充和正在进行的标准化工作旨在向c++标准库中添加数据并行类型。这样就可以在现有的c++代码中使用向量化技术,而不必依赖于c++编译器自动向量化代码执行的能力。将现有的并行算法与这些新的数据并行类型相结合,开辟了一种以最小的努力加速现有代码的新方法。目前,对于标准并行算法的潜在数据并行执行,只有很少的实现经验。在本文中,我们报告了两个新的数据并行执行策略的实现经验和性能分析结果,这些策略可用于HPX的并行算法模块:simd和par_simd。我们利用最新版本的GCC和Clang c++标准库提供的数据并行类型的新实验性实现。本文从人工测试和实际代码中收集的基准测试结果非常有希望。与顺序执行相比,我们报告了使用新实现的数据并行执行策略par_simd和HPX的并行算法执行时的加速超过三个数量级。我们还报告说,我们的实现在不同的计算架构(x64 - Intel和AMD,和Arm)上的性能可移植,使用不同的向量化扩展(AVX2, AVX512和NEON128)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信