Localized Temporal Representation in Human Action Recognition

Pang Ying Han, K. Yee, S. Ooi
{"title":"Localized Temporal Representation in Human Action Recognition","authors":"Pang Ying Han, K. Yee, S. Ooi","doi":"10.1145/3301326.3301338","DOIUrl":null,"url":null,"abstract":"The development of automated video surveillance has grown dramatically due to the increased concern with public safety and security. An automated surveillance with reliable human activity analysis is essential. In this paper, a localized spatio-temporal representation, alongside Motion History Image (MHI), Motion Energy Image (MEI) and Binarized Statistical Image Features (BSIF), is proposed for human action recognition. In this work, the information of timestamp and ratio of colors are extracted from the silhouette of MHI template. This information is then utilized to derive a temporal representation for encoding movement dynamics. This temporal representation preserves transient information of actions. Subsequently, local descriptors are computed from MHI and MEI temporal templates via BSIF. The computed localized temporal representation is classified by using a linear SVM. The proposed system offers promising performance in human action recognition with about 90% accuracy.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The development of automated video surveillance has grown dramatically due to the increased concern with public safety and security. An automated surveillance with reliable human activity analysis is essential. In this paper, a localized spatio-temporal representation, alongside Motion History Image (MHI), Motion Energy Image (MEI) and Binarized Statistical Image Features (BSIF), is proposed for human action recognition. In this work, the information of timestamp and ratio of colors are extracted from the silhouette of MHI template. This information is then utilized to derive a temporal representation for encoding movement dynamics. This temporal representation preserves transient information of actions. Subsequently, local descriptors are computed from MHI and MEI temporal templates via BSIF. The computed localized temporal representation is classified by using a linear SVM. The proposed system offers promising performance in human action recognition with about 90% accuracy.
人类动作识别中的局部时间表征
由于人们对公共安全的日益关注,自动视频监控的发展得到了极大的发展。具有可靠的人类活动分析的自动化监测是必不可少的。本文提出了一种与运动历史图像(MHI)、运动能量图像(MEI)和二值化统计图像特征(BSIF)相结合的局部时空表征方法,用于人体动作识别。在这项工作中,从MHI模板的轮廓中提取时间戳和颜色比例信息。然后利用该信息派生用于编码运动动力学的时间表示。这种时态表示保留了动作的瞬时信息。然后,通过BSIF从MHI和MEI时间模板中计算局部描述符。利用线性支持向量机对计算得到的局部时间表示进行分类。该系统在人体动作识别方面具有良好的性能,准确率约为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信