Bipartite Edge Correlation Clustering: Finding an Edge Biclique Partition from a Bipartite Graph with Minimum Disagreement

Mikio Mizukami, K. Hirata, T. Kuboyama
{"title":"Bipartite Edge Correlation Clustering: Finding an Edge Biclique Partition from a Bipartite Graph with Minimum Disagreement","authors":"Mikio Mizukami, K. Hirata, T. Kuboyama","doi":"10.5220/0007471506990706","DOIUrl":null,"url":null,"abstract":"In this paper, first we formulate the problem of a bipartite edge correlation clustering which finds an edge biclique partition with the minimum disagreement from a bipartite graph, by extending the bipartite correlation clustering which finds a biclique partition. Then, we design a simple randomized algorithm for bipartite edge correlation clustering, based on the randomized algorithm of bipartite correlation clustering. Finally, we give experimental results to evaluate the algorithms from both artificial data and real data.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"308 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007471506990706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, first we formulate the problem of a bipartite edge correlation clustering which finds an edge biclique partition with the minimum disagreement from a bipartite graph, by extending the bipartite correlation clustering which finds a biclique partition. Then, we design a simple randomized algorithm for bipartite edge correlation clustering, based on the randomized algorithm of bipartite correlation clustering. Finally, we give experimental results to evaluate the algorithms from both artificial data and real data.
二部边相关聚类:从最小分歧的二部图中寻找边的Biclique划分
本文首先通过推广寻找双方划分的二部相关聚类问题,给出了从二部图中寻找分歧最小的边方划分的二部边相关聚类问题。然后,在二部相关聚类随机化算法的基础上,设计了一种简单的二部边缘相关聚类随机化算法。最后给出了人工数据和实际数据的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信