Feedback-error-learning for controlling a flexible link

A. A. Neto, Wilson Rios Neto, L. Góes, C. Nascimento
{"title":"Feedback-error-learning for controlling a flexible link","authors":"A. A. Neto, Wilson Rios Neto, L. Góes, C. Nascimento","doi":"10.1109/SBRN.2000.889751","DOIUrl":null,"url":null,"abstract":"This paper discusses two approaches for neural control of a flexible link using the feedback-error-learning technique. This technique aims to acquire the inverse dynamics model of the plant and uses a neural network acting as an adaptive controller to improve the performance of a conventional non-adaptive feedback controller. The non-collocated control of a flexible link is characterized as a non-minimum phase system, which is difficult to be controlled by most control techniques. Two different neural approaches are used in this paper to overcome this difficulty. The first approach uses a virtual re-defined output as one of the impacts for the neural network and feedback controllers, while the other employs a delayed reference input signal in the feedback path and a tapped-delay line to process the reference input before presenting it to the neural network.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses two approaches for neural control of a flexible link using the feedback-error-learning technique. This technique aims to acquire the inverse dynamics model of the plant and uses a neural network acting as an adaptive controller to improve the performance of a conventional non-adaptive feedback controller. The non-collocated control of a flexible link is characterized as a non-minimum phase system, which is difficult to be controlled by most control techniques. Two different neural approaches are used in this paper to overcome this difficulty. The first approach uses a virtual re-defined output as one of the impacts for the neural network and feedback controllers, while the other employs a delayed reference input signal in the feedback path and a tapped-delay line to process the reference input before presenting it to the neural network.
柔性连杆控制的反馈误差学习
本文讨论了利用反馈-误差学习技术对柔性连杆进行神经控制的两种方法。该技术旨在获取被控对象的逆动力学模型,并利用神经网络作为自适应控制器来改进传统非自适应反馈控制器的性能。柔性连杆的非配位控制具有非最小相位系统的特点,是大多数控制技术难以控制的。本文采用了两种不同的神经方法来克服这一困难。第一种方法使用虚拟的重新定义的输出作为神经网络和反馈控制器的影响之一,而另一种方法在反馈路径中使用延迟的参考输入信号和抽头延迟线来处理参考输入,然后将其呈现给神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信