A Multi-classifier Approach to support Coreference Resolution in a Vector Space Model

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1503
Ana Zelaia Jauregi, Olatz Arregi Uriarte, B. Sierra
{"title":"A Multi-classifier Approach to support Coreference Resolution in a Vector Space Model","authors":"Ana Zelaia Jauregi, Olatz Arregi Uriarte, B. Sierra","doi":"10.3115/v1/W15-1503","DOIUrl":null,"url":null,"abstract":"In this paper a different machine learning approach is presented to deal with the coreference resolution task. This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional vector space. The vector representation for mentionpairs is generated using a rich set of linguistic features. The SVD technique is used to generate the reduced dimensional vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair vectors. Moreover, we can state that the multi-classifier plays an important role in improving the results.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a different machine learning approach is presented to deal with the coreference resolution task. This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional vector space. The vector representation for mentionpairs is generated using a rich set of linguistic features. The SVD technique is used to generate the reduced dimensional vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair vectors. Moreover, we can state that the multi-classifier plays an important role in improving the results.
一种支持矢量空间模型中共同参考分辨率的多分类器方法
本文提出了一种不同的机器学习方法来处理共同参考解析任务。该方法由一个多分类器系统组成,该系统在降维向量空间中对提及对进行分类。提及对的向量表示是使用一组丰富的语言特征生成的。利用奇异值分解技术生成降维向量空间。该方法应用于OntoNotes v4.0发布语料库,用于CONLL-2011共同引用分辨率共享任务中使用的列格式文件。结果表明,用奇异值分解得到的降维表示可以很好地对提及对向量进行分类。此外,我们可以说,多分类器在改善结果方面起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信