Providing Contextual Assistance in Response to Frustration in Visual Analytics Tasks

P. Panwar, A. Bradley, C. Collins
{"title":"Providing Contextual Assistance in Response to Frustration in Visual Analytics Tasks","authors":"P. Panwar, A. Bradley, C. Collins","doi":"10.1109/MLUI52768.2018.10075561","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for helping users in visual analytic tasks by using machine learning to detect and respond to frustration and provide appropriate recommendations and guidance. We have collected an emotion dataset from 28 participants carrying out intentionally difficult visualization tasks and used it to build an interactive frustration state detection model which detects frustration using data streaming from a small wrist-worn skin conductance device and eye tracking. We present a work-in-progress design exploration for interventions appropriate to different intensities of frustrations detected by the model. The interaction method and the level of interruption and assistance can be adjusted in response to the intensity and longevity of detected user states.","PeriodicalId":421877,"journal":{"name":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52768.2018.10075561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a method for helping users in visual analytic tasks by using machine learning to detect and respond to frustration and provide appropriate recommendations and guidance. We have collected an emotion dataset from 28 participants carrying out intentionally difficult visualization tasks and used it to build an interactive frustration state detection model which detects frustration using data streaming from a small wrist-worn skin conductance device and eye tracking. We present a work-in-progress design exploration for interventions appropriate to different intensities of frustrations detected by the model. The interaction method and the level of interruption and assistance can be adjusted in response to the intensity and longevity of detected user states.
在视觉分析任务中提供上下文帮助以应对挫折
本文提出了一种方法,通过使用机器学习来帮助用户进行视觉分析任务,以检测和响应挫折,并提供适当的建议和指导。我们收集了28名参与者的情绪数据集,这些参与者都在执行有意困难的可视化任务,并用它来构建一个交互式沮丧状态检测模型,该模型使用来自手腕上的小型皮肤电导设备和眼动追踪的数据流来检测沮丧感。我们提出了一项正在进行的设计探索,以适合模型检测到的不同挫折强度的干预措施。可以根据检测到的用户状态的强度和寿命调整交互方法以及中断和辅助的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信