Android Malware Detection Using Feature Selections and Random Forest

Taehoon Eom, Heesu Kim, SeongMo An, Jong Sou Park, Dong Seong Kim
{"title":"Android Malware Detection Using Feature Selections and Random Forest","authors":"Taehoon Eom, Heesu Kim, SeongMo An, Jong Sou Park, Dong Seong Kim","doi":"10.1109/ICSSA45270.2018.00023","DOIUrl":null,"url":null,"abstract":"Malicious software (Malware) applications in Android ecosystem is one of the critical issues. Manual detection of malware is not cost-effective and cannot keep up with the fast evolution of malware development in Android. A machine learning based malware detection has attempted to automate the detection of malware in Android. In this paper, we present new Android malware detection methods. The main idea of our proposed approach is to use three different feature selection methods before malware detection model using a machine learning algorithm is constructed. We used both Malware Genome Project dataset and our own crawled dataset to show the effectiveness of the proposed methods.","PeriodicalId":223442,"journal":{"name":"2018 International Conference on Software Security and Assurance (ICSSA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Software Security and Assurance (ICSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSA45270.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malicious software (Malware) applications in Android ecosystem is one of the critical issues. Manual detection of malware is not cost-effective and cannot keep up with the fast evolution of malware development in Android. A machine learning based malware detection has attempted to automate the detection of malware in Android. In this paper, we present new Android malware detection methods. The main idea of our proposed approach is to use three different feature selection methods before malware detection model using a machine learning algorithm is constructed. We used both Malware Genome Project dataset and our own crawled dataset to show the effectiveness of the proposed methods.
Android恶意软件检测使用特征选择和随机森林
恶意软件(Malware)应用是Android生态系统中的关键问题之一。手动检测恶意软件成本不高,无法跟上Android恶意软件开发的快速发展。基于机器学习的恶意软件检测已经尝试在Android上自动检测恶意软件。本文提出了一种新的Android恶意软件检测方法。我们提出的方法的主要思想是在使用机器学习算法构建恶意软件检测模型之前使用三种不同的特征选择方法。我们使用恶意软件基因组计划数据集和我们自己的抓取数据集来显示所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信