Bayesian inference to evaluate information leakage in complex scenarios

C. Troncoso
{"title":"Bayesian inference to evaluate information leakage in complex scenarios","authors":"C. Troncoso","doi":"10.1145/2482513.2485731","DOIUrl":null,"url":null,"abstract":"Common security evaluation methods require the estimation of the likelihood of a hidden state given an observation of the system. For instance: identifying the type of tampering on an image given the tampered file, identifying communication partner given an anonymous channel trace, identifying the location from where a service has been accessed given an obfuscated version of this location. In this talk we explore the suitability of Bayesian Inference techniques, specifically Markov Chain Monte Carlo methods, to evaluate information leakage in complex scenarios.\n Using anonymity systems, in particular mix networks, as case study we show that casting problems in the context of Bayesian inference provides an appropriate framework to evaluate security properties (e.g., traceability of messages) in complex constraints.\n We present a generative probabilistic model of mix network architectures that incorporates a number of attack techniques in the trace analysis literature. We use the model to build a Markov Chain Monte Carlo inference engine based on the Metropolis-Hastings algorithm that calculates the probabilities of who is talking to whom given an observation of network traces. Finally, we briefly overview other Bayesian techniques, such as Gibbs sampling and particle filtering, that are useful to tackle other security problems, like user profiling, or to consider dynamic behaviour.","PeriodicalId":243756,"journal":{"name":"Information Hiding and Multimedia Security Workshop","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Hiding and Multimedia Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482513.2485731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Common security evaluation methods require the estimation of the likelihood of a hidden state given an observation of the system. For instance: identifying the type of tampering on an image given the tampered file, identifying communication partner given an anonymous channel trace, identifying the location from where a service has been accessed given an obfuscated version of this location. In this talk we explore the suitability of Bayesian Inference techniques, specifically Markov Chain Monte Carlo methods, to evaluate information leakage in complex scenarios. Using anonymity systems, in particular mix networks, as case study we show that casting problems in the context of Bayesian inference provides an appropriate framework to evaluate security properties (e.g., traceability of messages) in complex constraints. We present a generative probabilistic model of mix network architectures that incorporates a number of attack techniques in the trace analysis literature. We use the model to build a Markov Chain Monte Carlo inference engine based on the Metropolis-Hastings algorithm that calculates the probabilities of who is talking to whom given an observation of network traces. Finally, we briefly overview other Bayesian techniques, such as Gibbs sampling and particle filtering, that are useful to tackle other security problems, like user profiling, or to consider dynamic behaviour.
基于贝叶斯推理的复杂场景信息泄漏评估
常见的安全评估方法需要估计给定系统观察的隐藏状态的可能性。例如:在给定被篡改文件的情况下识别图像上的篡改类型,在给定匿名通道跟踪的情况下识别通信伙伴,在给定该位置的混淆版本的情况下识别访问服务的位置。在这次演讲中,我们将探讨贝叶斯推理技术的适用性,特别是马尔可夫链蒙特卡罗方法,以评估复杂场景中的信息泄漏。使用匿名系统,特别是混合网络,作为案例研究,我们表明,在贝叶斯推理的背景下,转换问题提供了一个适当的框架来评估复杂约束下的安全属性(例如,消息的可追溯性)。我们提出了一个混合网络架构的生成概率模型,该模型结合了跟踪分析文献中的许多攻击技术。我们使用该模型建立了一个基于Metropolis-Hastings算法的马尔可夫链蒙特卡罗推理引擎,该引擎可以计算给定网络痕迹的谁在与谁交谈的概率。最后,我们简要概述了其他贝叶斯技术,如吉布斯采样和粒子滤波,这些技术有助于解决其他安全问题,如用户分析或考虑动态行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信