{"title":"Analysis of spatial open-loop system by means of direction cosine transformation matrices","authors":"T. Yih, Y. Youm","doi":"10.1115/1.3259030","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical approach for the displacement analysis of spatial openloop systems by means of direction cosine transformation matrices is presented. Two local coordinate systems at each joint are designated to formulate the direction cosine matrices, in recursive form, of the joint axis and link vector. Elements of the 3×3 direction cosine transformation matrices are computed based on the geometry of successive link elements, the unit vectors of preceding joint axis and link vector, and the cofactors of direction cosine matrix. The analysis using direction cosine matrix method will provide the “exact” joint positions in space. A computer algorithm is developed to investigate the workspaces of spatial n-R open-loop systems that projected onto the X-Y, Y-Z, and Z-X coordinate planes, respectively. Numerical examples for the workspaces of an industrial robot and the human upper extremity are illustrated.","PeriodicalId":206146,"journal":{"name":"Journal of Mechanisms Transmissions and Automation in Design","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms Transmissions and Automation in Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.3259030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, an analytical approach for the displacement analysis of spatial openloop systems by means of direction cosine transformation matrices is presented. Two local coordinate systems at each joint are designated to formulate the direction cosine matrices, in recursive form, of the joint axis and link vector. Elements of the 3×3 direction cosine transformation matrices are computed based on the geometry of successive link elements, the unit vectors of preceding joint axis and link vector, and the cofactors of direction cosine matrix. The analysis using direction cosine matrix method will provide the “exact” joint positions in space. A computer algorithm is developed to investigate the workspaces of spatial n-R open-loop systems that projected onto the X-Y, Y-Z, and Z-X coordinate planes, respectively. Numerical examples for the workspaces of an industrial robot and the human upper extremity are illustrated.