Mordell’s theorem

Jonah Ostroff
{"title":"Mordell’s theorem","authors":"Jonah Ostroff","doi":"10.1090/mbk/121/09","DOIUrl":null,"url":null,"abstract":"An abelian group is finitely generated if there exist finitely many elements a1, a2, . . . , ak such that any element of G can be expressed as a sum c1a1 + c2a2 + . . .+ ckak, where the ci are integers and multiplication denotes repeated addition. Note that this representation need not be unique, so any finite group is also finitely generated. A subgroup of an abelian group G is a set H ⊆ G which is itself a group under the same operation. For any a ∈ G, a+H = {a+ h : h ∈ H} is a coset of H. a is called a representative of the coset a + H. If b ∈ a + H, then b − a ∈ H. Any two cosets of H are either equal or disjoint. The index of H in G, denoted [G : H], is the number of disjoint cosets of H. For a ∈ G, the order of a is the minimum positive integer k such that ka is the identity, or ∞ if there is no such k.","PeriodicalId":423691,"journal":{"name":"100 Years of Math Milestones","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"100 Years of Math Milestones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mbk/121/09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An abelian group is finitely generated if there exist finitely many elements a1, a2, . . . , ak such that any element of G can be expressed as a sum c1a1 + c2a2 + . . .+ ckak, where the ci are integers and multiplication denotes repeated addition. Note that this representation need not be unique, so any finite group is also finitely generated. A subgroup of an abelian group G is a set H ⊆ G which is itself a group under the same operation. For any a ∈ G, a+H = {a+ h : h ∈ H} is a coset of H. a is called a representative of the coset a + H. If b ∈ a + H, then b − a ∈ H. Any two cosets of H are either equal or disjoint. The index of H in G, denoted [G : H], is the number of disjoint cosets of H. For a ∈ G, the order of a is the minimum positive integer k such that ka is the identity, or ∞ if there is no such k.
Mordell是定理
如果存在有限个元素a1, a2,…,则生成有限个阿贝尔群。,使得G中的任何元素都可以表示为c1a1 + c2a2 +…+ ckak,其中ci是整数,乘法表示重复相加。注意,这种表示不必是唯一的,因此任何有限群也是有限生成的。阿贝尔群G的一个子群是一个集H≤G,其本身是同一运算下的一个群。对于任意a∈G, a+H = {a+ H: H∈H}是H的一个协集。a称为协集a+H的代表。若b∈a+H,则b−a∈H。H的任意两个协集要么相等,要么不相交。H在G中的索引,记为[G: H],是H的不相交的余集的个数。对于a∈G, a的阶数是使ka为单位元的最小正整数k,如果不存在这样的k,则为∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信