A note on curvature-like invariants of some connections on locally decomposable spaces

N. Pušić
{"title":"A note on curvature-like invariants of some connections on locally decomposable spaces","authors":"N. Pušić","doi":"10.2298/pim1308219p","DOIUrl":null,"url":null,"abstract":"We consider an n-dimensional locally product space with p and q dimensional \n components (p + q = n) with parallel structure tensor, which means that such \n a space is locally decomposable. If we introduce a conformal transformation \n on such a space AB, it will have an invariant curvature-type tensor, the \n so-called product conformal curvature tensor (PC-tensor). Here we consider \n two connections, (F, g)-holomorphically semisymmetric one and \n F-holomorphically semisymmetric one, both with gradient generators. They \n both have curvature-like invariants and they are both equal to PC-tensor.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"20 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/pim1308219p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider an n-dimensional locally product space with p and q dimensional components (p + q = n) with parallel structure tensor, which means that such a space is locally decomposable. If we introduce a conformal transformation on such a space AB, it will have an invariant curvature-type tensor, the so-called product conformal curvature tensor (PC-tensor). Here we consider two connections, (F, g)-holomorphically semisymmetric one and F-holomorphically semisymmetric one, both with gradient generators. They both have curvature-like invariants and they are both equal to PC-tensor.
局部可分解空间上某些连接的类曲率不变量的注记
我们考虑了一个具有平行结构张量的n维局部积空间,该空间具有p维和q维分量(p + q = n),这意味着该空间是局部可分解的。如果我们在这样的空间AB上引入一个共形变换,它将有一个不变的曲率型张量,即所谓的积共形曲率张量(pc -张量)。这里我们考虑两个连接,(F, g)-全纯半对称连接和F-全纯半对称连接,它们都有梯度发生器。它们都有类曲率不变量它们都等于pc张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信