{"title":"Optimization and Analysis Techniques for the Deep Submicron Regime","authors":"N. Menezes, S. Sapatnekar","doi":"10.1109/VLSID.2001.10019","DOIUrl":null,"url":null,"abstract":"Scaling in the deep submicron (DSM) regime has fundamentally altered the primary issues affecting VLSI design. The emergence of DSM-related problems has resulted in a proliferation of design techniques that attempt to alleviate these newer effects in current flows. However, future design methodologies would be required to undergo a paradigm shift to comprehensively address these problems. A few of these newer problems are listed below:","PeriodicalId":382435,"journal":{"name":"VLSI design (Print)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI design (Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2001.10019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Scaling in the deep submicron (DSM) regime has fundamentally altered the primary issues affecting VLSI design. The emergence of DSM-related problems has resulted in a proliferation of design techniques that attempt to alleviate these newer effects in current flows. However, future design methodologies would be required to undergo a paradigm shift to comprehensively address these problems. A few of these newer problems are listed below: