Protecting data from malware threats using machine learning technique

Mozammel Chowdhury, Azizur Rahman, R. Islam
{"title":"Protecting data from malware threats using machine learning technique","authors":"Mozammel Chowdhury, Azizur Rahman, R. Islam","doi":"10.1109/ICIEA.2017.8283111","DOIUrl":null,"url":null,"abstract":"Cyber attacks against sensitive data have become as serious threats all over the world due to the rising applications of computer and information technology. New malware or malicious programs are released everyday by cyber criminals through the Internet in an attempt to steal or destroy important data. Hence, research on protecting data receives tremendous interest in the cyber community. In order to cope with new variants of malicious software, machine learning techniques can be used for accurate classification and detection. This paper proposes an efficient scheme for malware detection for protecting sensitive data from malicious threats using data mining and machine learning techniques. Experimental results shows that the proposed approach gives better performance compared to other similar methods.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cyber attacks against sensitive data have become as serious threats all over the world due to the rising applications of computer and information technology. New malware or malicious programs are released everyday by cyber criminals through the Internet in an attempt to steal or destroy important data. Hence, research on protecting data receives tremendous interest in the cyber community. In order to cope with new variants of malicious software, machine learning techniques can be used for accurate classification and detection. This paper proposes an efficient scheme for malware detection for protecting sensitive data from malicious threats using data mining and machine learning techniques. Experimental results shows that the proposed approach gives better performance compared to other similar methods.
使用机器学习技术保护数据免受恶意软件威胁
随着计算机和信息技术应用的日益广泛,针对敏感数据的网络攻击已成为全球范围内的严重威胁。网络犯罪分子每天都会通过互联网发布新的恶意软件或恶意程序,试图窃取或破坏重要数据。因此,对数据保护的研究受到了网络社区的极大关注。为了应对新的恶意软件变体,机器学习技术可以用于准确的分类和检测。本文提出了一种有效的恶意软件检测方案,利用数据挖掘和机器学习技术保护敏感数据免受恶意威胁。实验结果表明,与其他类似方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信