Smart Charging for Electric Ride-Hailing Vehicles using Renewables: A San Francisco Case Study

Stefania Mitova, Alejandro Henao, Rudy Kahsar, Carson JQ Farmer
{"title":"Smart Charging for Electric Ride-Hailing Vehicles using Renewables: A San Francisco Case Study","authors":"Stefania Mitova, Alejandro Henao, Rudy Kahsar, Carson JQ Farmer","doi":"10.18488/13.v11i2.3081","DOIUrl":null,"url":null,"abstract":"Charging large fleets of electric ride-hailing vehicles (ERVs) is a complex matter that could serve different objectives: lower carbon dioxide emissions, lower monetary expenditures, or maximize solar photovoltaics (PV) energy consumption. Currently, it is unclear how each of those objectives could impact the business and performance of a ride-hailing fleet. In order to fill this gap, this article employs a dynamic transportation model: a smart charging simulation that combines agent-based, discrete-event, and system dynamic modelling by comparing the above-mentioned objectives in separate scenarios. The results show that each scenario successfully manages to shift between 34% and 87% of all load to hours of the day when the objectives of those scenarios are met. Therefore, in comparison to the baseline, smart charging can save between 5% and 26% of monthly emissions and between 4% and 57% of monthly expenditures. The solar PV scenario, however, results in the highest savings, while ensuring profitable economics via net metering in the short- as well as long term. Finally, the sensitivity analysis points to important trade-offs between several fleet performance metrics. The article concludes by giving business and policy recommendations for maximising the economic, energy and environmental efficiency of large ERV fleets.","PeriodicalId":145301,"journal":{"name":"International Journal of Sustainable Energy and Environmental Research","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy and Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18488/13.v11i2.3081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Charging large fleets of electric ride-hailing vehicles (ERVs) is a complex matter that could serve different objectives: lower carbon dioxide emissions, lower monetary expenditures, or maximize solar photovoltaics (PV) energy consumption. Currently, it is unclear how each of those objectives could impact the business and performance of a ride-hailing fleet. In order to fill this gap, this article employs a dynamic transportation model: a smart charging simulation that combines agent-based, discrete-event, and system dynamic modelling by comparing the above-mentioned objectives in separate scenarios. The results show that each scenario successfully manages to shift between 34% and 87% of all load to hours of the day when the objectives of those scenarios are met. Therefore, in comparison to the baseline, smart charging can save between 5% and 26% of monthly emissions and between 4% and 57% of monthly expenditures. The solar PV scenario, however, results in the highest savings, while ensuring profitable economics via net metering in the short- as well as long term. Finally, the sensitivity analysis points to important trade-offs between several fleet performance metrics. The article concludes by giving business and policy recommendations for maximising the economic, energy and environmental efficiency of large ERV fleets.
使用可再生能源的电动叫车智能充电:旧金山案例研究
为大型电动叫车车(erv)充电是一件复杂的事情,可以实现不同的目标:降低二氧化碳排放,降低货币支出,或最大限度地提高太阳能光伏(PV)的能源消耗。目前,还不清楚这些目标将如何影响网约车车队的业务和业绩。为了填补这一空白,本文采用了一种动态交通模型:通过在不同的场景中比较上述目标,将基于代理的、离散事件的和系统动态建模相结合的智能充电仿真。结果表明,当满足这些场景的目标时,每个场景都成功地将所有负载的34%到87%转移到一天中的几个小时。因此,与基线相比,智能充电可以节省每月5%至26%的排放量和4%至57%的每月支出。然而,太阳能光伏方案的结果是最高的节约,同时通过短期和长期的净计量确保有利可图的经济效益。最后,敏感性分析指出了几个车队性能指标之间的重要权衡。文章最后提出了商业和政策建议,以最大限度地提高大型电动汽车车队的经济、能源和环境效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信