Language Identification of Assamese, Bengali and English Speech

Joyshree Chakraborty, Shikhamoni Nath, R. NirmalaS., K. Samudravijaya
{"title":"Language Identification of Assamese, Bengali and English Speech","authors":"Joyshree Chakraborty, Shikhamoni Nath, R. NirmalaS., K. Samudravijaya","doi":"10.21437/SLTU.2018-37","DOIUrl":null,"url":null,"abstract":"Machine identification of the language of input speech is of practical interest in regions where people are either bilingual or multi-lingual. Here, we present the development of automatic language identification system that identifies the language of input speech as one of Assamese or Bengali or English spoken by them. The speech databases comprise of sentences read by multiple speakers using their mobile phones. Kaldi toolkit was used to train acoustic models based on hidden Markov model in conjunction with Gaussian mixture models and deep neural networks. The accuracy of the implemented language identification system for test data is 99.3%.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Machine identification of the language of input speech is of practical interest in regions where people are either bilingual or multi-lingual. Here, we present the development of automatic language identification system that identifies the language of input speech as one of Assamese or Bengali or English spoken by them. The speech databases comprise of sentences read by multiple speakers using their mobile phones. Kaldi toolkit was used to train acoustic models based on hidden Markov model in conjunction with Gaussian mixture models and deep neural networks. The accuracy of the implemented language identification system for test data is 99.3%.
阿萨姆语、孟加拉语和英语语音的语言识别
机器识别输入语音的语言在人们使用双语或多语言的地区具有实际意义。在这里,我们提出了自动语言识别系统的开发,该系统将输入语音识别为他们所说的阿萨姆语或孟加拉语或英语中的一种。语音数据库由多个说话者使用手机朗读的句子组成。利用Kaldi工具集,结合高斯混合模型和深度神经网络,训练基于隐马尔可夫模型的声学模型。所实现的语言识别系统对测试数据的准确率为99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信