{"title":"Curating the Twitter Election Integrity Datasets for Better Online Troll Characterization","authors":"Albert Orozco, Reihaneh Rabbany","doi":"10.52591/202112076","DOIUrl":null,"url":null,"abstract":"In modern days, social media platforms provide accessible channels for the inter- 1 action and immediate reflection of the most important events happening around 2 the world. In this paper, we, firstly, present a curated set of datasets whose origin 3 stem from the Twitter’s Information Operations 1 efforts. More notably, these 4 accounts, which have been already suspended, provide a notion of how state-backed 5 human trolls operate. 6 Secondly, we present detailed analyses of how these behaviours vary over time, 7 and motivate its use and abstraction in the context of deep representation learning: 8 for instance, to learn and, potentially track, troll behaviour. We present baselines 9 for such tasks and highlight the differences there may exist within the literature. 10 Finally, we utilize the representations learned for behaviour prediction to classify 11 trolls from \"real\" users, using a sample of non-suspended active accounts. 12","PeriodicalId":355096,"journal":{"name":"LatinX in AI at Neural Information Processing Systems Conference 2021","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at Neural Information Processing Systems Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/202112076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In modern days, social media platforms provide accessible channels for the inter- 1 action and immediate reflection of the most important events happening around 2 the world. In this paper, we, firstly, present a curated set of datasets whose origin 3 stem from the Twitter’s Information Operations 1 efforts. More notably, these 4 accounts, which have been already suspended, provide a notion of how state-backed 5 human trolls operate. 6 Secondly, we present detailed analyses of how these behaviours vary over time, 7 and motivate its use and abstraction in the context of deep representation learning: 8 for instance, to learn and, potentially track, troll behaviour. We present baselines 9 for such tasks and highlight the differences there may exist within the literature. 10 Finally, we utilize the representations learned for behaviour prediction to classify 11 trolls from "real" users, using a sample of non-suspended active accounts. 12