Time Series Forecasting Using Optimized Rolling Grey Model

M. Yeh, Hung-Ching Lu, Ti-Hung Chen
{"title":"Time Series Forecasting Using Optimized Rolling Grey Model","authors":"M. Yeh, Hung-Ching Lu, Ti-Hung Chen","doi":"10.1109/ICMLC48188.2019.8949310","DOIUrl":null,"url":null,"abstract":"This study attempts to improve the forecasting accuracy of rolling grey model by applying Gaussian bare-bones differential evolution (GBDE) to optimize the weight of background value and number of data points used to construct a rolling-GM(1,1). Experimental results on two real time series forecasting problems show that the proposed GBDE-based rolling-GM(l,l) outperforms the traditional rolling-GM(l,l) in terms of fitting accuracy and forecasting accuracy.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"19 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study attempts to improve the forecasting accuracy of rolling grey model by applying Gaussian bare-bones differential evolution (GBDE) to optimize the weight of background value and number of data points used to construct a rolling-GM(1,1). Experimental results on two real time series forecasting problems show that the proposed GBDE-based rolling-GM(l,l) outperforms the traditional rolling-GM(l,l) in terms of fitting accuracy and forecasting accuracy.
基于优化滚动灰色模型的时间序列预测
为了提高滚动灰色模型的预测精度,本研究采用高斯裸骨差分进化(GBDE)对构建滚动gm的背景值权重和数据点个数进行优化(1,1)。在两个实时序列预测问题上的实验结果表明,本文提出的基于gbde的滚动gm (l,l)在拟合精度和预测精度上都优于传统的滚动gm (l,l)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信