Spatiotemporal dimensionality and time-space characterization of vegetation phenology from multitemporal MODIS EVI

C. Small
{"title":"Spatiotemporal dimensionality and time-space characterization of vegetation phenology from multitemporal MODIS EVI","authors":"C. Small","doi":"10.1109/MULTI-TEMP.2011.6005049","DOIUrl":null,"url":null,"abstract":"Spatiotemporal dimensionality refers to the structure of the continuum of spatial and temporal patterns in an image time series. Time-Space characterization refers to an approach for representing this continuum as combinations of spatial and temporal components with a minimum of assumptions about the forms of the patterns. Patterns can be related to processes through modeling — both deterministic and statistical. By combining characterization and modeling, two complementary analytical tools can be used together so that each resolves a key limitation of the other. Empirical Orthogonal Function analysis, used in conjunction with Temporal Mixture Models, provide a way to 1) Represent the spatiotemporal dimensionality of an image time series, 2) Identify distinct temporal modes and their spatial distributions, and 3) Map the relative contributions of these modes to the observed image time series as spatially continuous fields. Some strengths and limitations of Time-Space characterization are illustrated using multitemporal MODIS EVI time series of vegetation dynamics on the Ganges-Brahmaputra delta.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Spatiotemporal dimensionality refers to the structure of the continuum of spatial and temporal patterns in an image time series. Time-Space characterization refers to an approach for representing this continuum as combinations of spatial and temporal components with a minimum of assumptions about the forms of the patterns. Patterns can be related to processes through modeling — both deterministic and statistical. By combining characterization and modeling, two complementary analytical tools can be used together so that each resolves a key limitation of the other. Empirical Orthogonal Function analysis, used in conjunction with Temporal Mixture Models, provide a way to 1) Represent the spatiotemporal dimensionality of an image time series, 2) Identify distinct temporal modes and their spatial distributions, and 3) Map the relative contributions of these modes to the observed image time series as spatially continuous fields. Some strengths and limitations of Time-Space characterization are illustrated using multitemporal MODIS EVI time series of vegetation dynamics on the Ganges-Brahmaputra delta.
基于多时相MODIS EVI的植被物候时空特征研究
时空维度是指图像时间序列中时空格局的连续体结构。时空表征指的是一种方法,将这种连续体表示为空间和时间成分的组合,并对模式的形式进行最少的假设。模式可以通过建模(确定性的和统计的)与过程相关联。通过结合表征和建模,两个互补的分析工具可以一起使用,这样每个工具都可以解决对方的一个关键限制。与时间混合模型结合使用的经验正交函数分析提供了一种方法:1)表示图像时间序列的时空维度;2)识别不同的时间模式及其空间分布;3)将这些模式对观测图像时间序列的相对贡献映射为空间连续场。利用多时相MODIS EVI时间序列对恒河-雅鲁藏布江三角洲植被动态进行了分析,说明了时空表征的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信