Semantic tag recommendation using concept model

Chenliang Li, Anwitaman Datta, Aixin Sun
{"title":"Semantic tag recommendation using concept model","authors":"Chenliang Li, Anwitaman Datta, Aixin Sun","doi":"10.1145/2009916.2010098","DOIUrl":null,"url":null,"abstract":"The common tags given by multiple users to a particular document are often semantically relevant to the document and each tag represents a specific topic. In this paper, we attempt to emulate human tagging behavior to recommend tags by considering the concepts contained in documents. Specifically, we represent each document using a few most relevant concepts contained in the document, where the concept space is derived from Wikipedia. Tags are then recommended based on the tag concept model derived from the annotated documents of each tag. Evaluated on a Delicious dataset of more than 53K documents, the proposed technique achieved comparable tag recommendation accuracy as the state-of-the-art, while yielding an order of magnitude speed-up.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The common tags given by multiple users to a particular document are often semantically relevant to the document and each tag represents a specific topic. In this paper, we attempt to emulate human tagging behavior to recommend tags by considering the concepts contained in documents. Specifically, we represent each document using a few most relevant concepts contained in the document, where the concept space is derived from Wikipedia. Tags are then recommended based on the tag concept model derived from the annotated documents of each tag. Evaluated on a Delicious dataset of more than 53K documents, the proposed technique achieved comparable tag recommendation accuracy as the state-of-the-art, while yielding an order of magnitude speed-up.
基于概念模型的语义标签推荐
多个用户对特定文档给出的公共标记通常在语义上与文档相关,每个标记代表一个特定的主题。在本文中,我们尝试通过考虑文档中包含的概念来模仿人类标记行为来推荐标记。具体来说,我们使用文档中包含的几个最相关的概念来表示每个文档,其中的概念空间来源于Wikipedia。然后根据从每个标记的注释文档派生的标记概念模型推荐标记。在超过53K个文档的Delicious数据集上进行评估,所提出的技术达到了与最先进的标签推荐准确度相当的水平,同时产生了一个数量级的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信