A MapReduce Style Framework for Computations on Trees

William Sarje, S. Aluru
{"title":"A MapReduce Style Framework for Computations on Trees","authors":"William Sarje, S. Aluru","doi":"10.1109/ICPP.2010.42","DOIUrl":null,"url":null,"abstract":"The emergence of cloud computing and Google's MapReduce paradigm is renewing interest in the development of broadly applicable high level abstractions as a means to deliver easy programmability and cyber resources to the user, while hiding complexities of system architecture, parallelism and algorithms, heterogeneity, and fault-tolerance. In this paper, we present a high-level framework for computations on tree structures. Despite the diversity and types of tree structures, and the algorithmic ways in which they are utilized, our abstraction provides sufficient generality to be broadly applicable. We show how certain frequently used operations on tree structures can be cast in terms of our framework. We further demonstrate the applicability of our framework by solving two applications -- k-nearest neighbors and fast multipole method (FMM) based simulations -- by merely using our framework in multiple ways. We developed a generic programming based implementation of the framework using C++ and MPI, and demonstrate its performance on the aforementioned applications using homogeneous multi-core clusters.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The emergence of cloud computing and Google's MapReduce paradigm is renewing interest in the development of broadly applicable high level abstractions as a means to deliver easy programmability and cyber resources to the user, while hiding complexities of system architecture, parallelism and algorithms, heterogeneity, and fault-tolerance. In this paper, we present a high-level framework for computations on tree structures. Despite the diversity and types of tree structures, and the algorithmic ways in which they are utilized, our abstraction provides sufficient generality to be broadly applicable. We show how certain frequently used operations on tree structures can be cast in terms of our framework. We further demonstrate the applicability of our framework by solving two applications -- k-nearest neighbors and fast multipole method (FMM) based simulations -- by merely using our framework in multiple ways. We developed a generic programming based implementation of the framework using C++ and MPI, and demonstrate its performance on the aforementioned applications using homogeneous multi-core clusters.
树上计算的MapReduce风格框架
云计算和谷歌MapReduce范式的出现重新引起了人们对开发广泛适用的高级抽象的兴趣,作为向用户提供易于编程和网络资源的一种手段,同时隐藏了系统架构、并行性和算法、异构性和容错性的复杂性。在本文中,我们提出了一个树结构计算的高级框架。尽管树形结构的多样性和类型,以及使用它们的算法方式,我们的抽象提供了足够的通用性,可以广泛应用。我们将展示如何根据我们的框架转换树形结构上某些经常使用的操作。通过以多种方式使用我们的框架,我们通过解决两个应用程序——k近邻和基于快速多极方法(FMM)的模拟,进一步证明了我们框架的适用性。我们使用c++和MPI开发了一个基于通用编程的框架实现,并使用同构多核集群演示了其在上述应用程序上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信