An Interdisciplinary Perspective on Evaluation and Experimental Design for Visual Text Analytics: Position Paper

K. Kucher, N. Sultanum, Angel Daza, Vasiliki Simaki, Maria Skeppstedt, Barbara Plank, Jean-Daniel Fekete, Narges Mahyar
{"title":"An Interdisciplinary Perspective on Evaluation and Experimental Design for Visual Text Analytics: Position Paper","authors":"K. Kucher, N. Sultanum, Angel Daza, Vasiliki Simaki, Maria Skeppstedt, Barbara Plank, Jean-Daniel Fekete, Narges Mahyar","doi":"10.1109/BELIV57783.2022.00008","DOIUrl":null,"url":null,"abstract":"Appropriate evaluation and experimental design are fundamental for empirical sciences, particularly in data-driven fields. Due to the successes in computational modeling of languages, for instance, research outcomes are having an increasingly immediate impact on end users. As the gap in adoption by end users decreases, the need increases to ensure that tools and models developed by the research communities and practitioners are reliable, trustworthy, and supportive of the users in their goals. In this position paper, we focus on the issues of evaluating visual text analytics approaches. We take an interdisciplinary perspective from the visualization and natural language processing communities, as we argue that the design and validation of visual text analytics include concerns beyond computational or visual/interactive methods on their own. We identify four key groups of challenges for evaluating visual text analytics approaches (data ambiguity, experimental design, user trust, and \"big picture\" concerns) and provide suggestions for research opportunities from an interdisciplinary perspective.","PeriodicalId":299298,"journal":{"name":"2022 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BELIV57783.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Appropriate evaluation and experimental design are fundamental for empirical sciences, particularly in data-driven fields. Due to the successes in computational modeling of languages, for instance, research outcomes are having an increasingly immediate impact on end users. As the gap in adoption by end users decreases, the need increases to ensure that tools and models developed by the research communities and practitioners are reliable, trustworthy, and supportive of the users in their goals. In this position paper, we focus on the issues of evaluating visual text analytics approaches. We take an interdisciplinary perspective from the visualization and natural language processing communities, as we argue that the design and validation of visual text analytics include concerns beyond computational or visual/interactive methods on their own. We identify four key groups of challenges for evaluating visual text analytics approaches (data ambiguity, experimental design, user trust, and "big picture" concerns) and provide suggestions for research opportunities from an interdisciplinary perspective.
视觉文本分析评估与实验设计的跨学科视角:立场文件
适当的评估和实验设计是实证科学的基础,特别是在数据驱动的领域。例如,由于语言计算建模的成功,研究成果对最终用户产生了越来越直接的影响。随着最终用户在采用方面的差距缩小,确保研究团体和从业者开发的工具和模型是可靠的、值得信赖的,并支持用户实现其目标的需求也在增加。在这篇立场文件中,我们关注评估视觉文本分析方法的问题。我们从可视化和自然语言处理社区采取跨学科的观点,因为我们认为可视化文本分析的设计和验证包括超出计算或可视化/交互方法本身的关注。我们确定了评估视觉文本分析方法的四组关键挑战(数据模糊性、实验设计、用户信任和“大局”问题),并从跨学科的角度为研究机会提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信