Power-Efficient Multi-User Dual-Function Radar-Communications

Ammar Ahmed, Yujie Gu, D. Silage, Yimin D. Zhang
{"title":"Power-Efficient Multi-User Dual-Function Radar-Communications","authors":"Ammar Ahmed, Yujie Gu, D. Silage, Yimin D. Zhang","doi":"10.1109/SPAWC.2018.8445963","DOIUrl":null,"url":null,"abstract":"Dual-function radar-communications (DFRC) systems have emerged as a promising solution for spectrum sharing problem in recent years. In this paper, we propose a novel DFRC strategy by exploiting directional power control and waveform diversity. The proposed technique ensures the highest possible magnitude of the radar main beam resulting in an improved signal-to-noise ratio for the radar operation. This maximization objective is achieved while considering the pre-allocated or adjustable transmit energy requirement for radar and communication operations. The secondary communication objective enabling multi-user access is realized by transmitting distinct amplitude levels and phases towards different communication receivers located in the sidelobe region of radar. As an example, power allocation for different orthogonal frequency-division multiplexing (OFDM) subcarriers projected towards the radar main beam and the communication receivers is discussed by considering the frequency response of target returns. Simulation results illustrate the performance of the proposed technique.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Dual-function radar-communications (DFRC) systems have emerged as a promising solution for spectrum sharing problem in recent years. In this paper, we propose a novel DFRC strategy by exploiting directional power control and waveform diversity. The proposed technique ensures the highest possible magnitude of the radar main beam resulting in an improved signal-to-noise ratio for the radar operation. This maximization objective is achieved while considering the pre-allocated or adjustable transmit energy requirement for radar and communication operations. The secondary communication objective enabling multi-user access is realized by transmitting distinct amplitude levels and phases towards different communication receivers located in the sidelobe region of radar. As an example, power allocation for different orthogonal frequency-division multiplexing (OFDM) subcarriers projected towards the radar main beam and the communication receivers is discussed by considering the frequency response of target returns. Simulation results illustrate the performance of the proposed technique.
高能效多用户双功能雷达通信
双功能雷达通信(DFRC)系统是近年来解决频谱共享问题的一种很有前途的解决方案。本文提出了一种利用定向功率控制和波形分集的DFRC策略。所提出的技术确保了雷达主波束的最高可能幅度,从而提高了雷达操作的信噪比。在考虑雷达和通信操作的预分配或可调传输能量需求的同时,实现了这一最大化目标。通过向位于雷达旁瓣区的不同通信接收机发射不同的幅度电平和相位,实现了多用户接入的二次通信目标。作为实例,考虑目标回波的频率响应,讨论了不同正交频分复用(OFDM)子载波对雷达主波束和通信接收机的功率分配问题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信