Supervised Learning Using The Vector Memory Array Method

A. B. Larkin, E. Hines, S. M. Thomas, J. W. Gardner
{"title":"Supervised Learning Using The Vector Memory Array Method","authors":"A. B. Larkin, E. Hines, S. M. Thomas, J. W. Gardner","doi":"10.1109/NNAT.1993.586047","DOIUrl":null,"url":null,"abstract":"The Vector Memory Array (VMA) is a novel neural network architecture. The principles of VMA are presented here and it is applied to data gathered by an Electronic nose in response to five simple odours (alcohols) and three complex odours (coffees). VMA achieved 100% accuracy on the alcohol data-set (40 samples) and 92% accuracy on the coffee data-set (90 samples) in just a few seconds. These results suggest a superior generalisation capability and learning speed compared to other neural paradigms, such as backpropagation, Alpaydin ’s constructive learning and logical neurons. Although VMA requires the assignment of the input vectors to an input hidden array layer, the associated memory cost may be offset in applications where fast processing and easy changes in training set are the principal requirements.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Vector Memory Array (VMA) is a novel neural network architecture. The principles of VMA are presented here and it is applied to data gathered by an Electronic nose in response to five simple odours (alcohols) and three complex odours (coffees). VMA achieved 100% accuracy on the alcohol data-set (40 samples) and 92% accuracy on the coffee data-set (90 samples) in just a few seconds. These results suggest a superior generalisation capability and learning speed compared to other neural paradigms, such as backpropagation, Alpaydin ’s constructive learning and logical neurons. Although VMA requires the assignment of the input vectors to an input hidden array layer, the associated memory cost may be offset in applications where fast processing and easy changes in training set are the principal requirements.
使用向量记忆阵列方法的监督学习
向量记忆阵列(VMA)是一种新颖的神经网络结构。这里介绍了VMA的原理,并将其应用于电子鼻对五种简单气味(酒精)和三种复杂气味(咖啡)的响应所收集的数据。在短短几秒钟内,VMA在酒精数据集(40个样本)上实现了100%的准确率,在咖啡数据集(90个样本)上实现了92%的准确率。这些结果表明,与其他神经范式(如反向传播、Alpaydin的建设性学习和逻辑神经元)相比,它具有优越的泛化能力和学习速度。尽管VMA需要将输入向量分配到输入隐藏数组层,但在以快速处理和易于更改训练集为主要要求的应用中,相关的内存成本可能会被抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信