Early Experience of Depth Estimation on Intricate Objects using Generative Adversarial Networks

Wai Y. K. San, Teng Zhang, Shaokang Chen, A. Wiliem, Dario Stefanelli, B. Lovell
{"title":"Early Experience of Depth Estimation on Intricate Objects using Generative Adversarial Networks","authors":"Wai Y. K. San, Teng Zhang, Shaokang Chen, A. Wiliem, Dario Stefanelli, B. Lovell","doi":"10.1109/DICTA.2018.8615783","DOIUrl":null,"url":null,"abstract":"Object parts within a scene observed by the human eye exhibit their own unique depth. Producing a single image with an accurate depth of field has many implications, namely: virtual and augmented reality, mobile robotics, digital photography and medical imaging. In this work, we aim to exploit the effectiveness of conditional Generative Adversarial Networks (GAN) to improve depth estimation from a singular inexpensive monocular sensor camera sensor. The complexity of an object shape, texture and environmental conditions make depth estimations challenging. Our approach is evaluated on our novel depth map dataset we release publicly containing the challenging photo-depth image pairs. Standard evaluation metrics against other depth map estimation techniques demonstrates the effectiveness of our approach. A study of the effectiveness of GAN on different test data is demonstrated both qualitatively and quantitatively.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object parts within a scene observed by the human eye exhibit their own unique depth. Producing a single image with an accurate depth of field has many implications, namely: virtual and augmented reality, mobile robotics, digital photography and medical imaging. In this work, we aim to exploit the effectiveness of conditional Generative Adversarial Networks (GAN) to improve depth estimation from a singular inexpensive monocular sensor camera sensor. The complexity of an object shape, texture and environmental conditions make depth estimations challenging. Our approach is evaluated on our novel depth map dataset we release publicly containing the challenging photo-depth image pairs. Standard evaluation metrics against other depth map estimation techniques demonstrates the effectiveness of our approach. A study of the effectiveness of GAN on different test data is demonstrated both qualitatively and quantitatively.
基于生成对抗网络的复杂目标深度估计的早期经验
人眼所观察到的场景中的物体各部分都有其独特的深度。产生具有准确景深的单幅图像具有许多含义,即:虚拟和增强现实,移动机器人,数字摄影和医学成像。在这项工作中,我们的目标是利用条件生成对抗网络(GAN)的有效性来改进单一廉价的单目传感器相机传感器的深度估计。物体形状、纹理和环境条件的复杂性使得深度估计具有挑战性。我们的方法在我们公开发布的包含具有挑战性的照片深度图像对的新型深度图数据集上进行了评估。针对其他深度图估计技术的标准评估指标证明了我们方法的有效性。本文从定性和定量两方面论证了氮化镓在不同测试数据上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信