A Neuro-Symbolic Approach for Marine Vessels Power Prediction Under Distribution Shifts

Ahmad Hammoudeh, Ibrahim Ghannam, Hamza Mubarak, Emmanuael Jean, Virginie Vandenbulcke, Stéphane Dupont
{"title":"A Neuro-Symbolic Approach for Marine Vessels Power Prediction Under Distribution Shifts","authors":"Ahmad Hammoudeh, Ibrahim Ghannam, Hamza Mubarak, Emmanuael Jean, Virginie Vandenbulcke, Stéphane Dupont","doi":"10.1109/JEEIT58638.2023.10185803","DOIUrl":null,"url":null,"abstract":"This paper proposes a neuro-symbolic approach to predict the power of marine cargo vessels. The neuro-symbolic approach combines two parts. The first is a neural networks part, and the second is a symbolic part that relies on physics-based formulae. The Shifts-power dataset was used for evaluation. The experimental results showed that a combination of a physics-based module (symbolic part) with a neural networks model (namely ensemble Monte Carlo dropout) superseded the state-of-the-art results by 2.3% in terms of uncertainty estimation measured using R-AUC, and by 3.4% in terms of power prediction for out-of-distribution (OOD) examples measured using RMSE. It also superseded the symbolic approach by 6.3% in terms of uncertainty and 17.7% in terms of OOD power prediction.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a neuro-symbolic approach to predict the power of marine cargo vessels. The neuro-symbolic approach combines two parts. The first is a neural networks part, and the second is a symbolic part that relies on physics-based formulae. The Shifts-power dataset was used for evaluation. The experimental results showed that a combination of a physics-based module (symbolic part) with a neural networks model (namely ensemble Monte Carlo dropout) superseded the state-of-the-art results by 2.3% in terms of uncertainty estimation measured using R-AUC, and by 3.4% in terms of power prediction for out-of-distribution (OOD) examples measured using RMSE. It also superseded the symbolic approach by 6.3% in terms of uncertainty and 17.7% in terms of OOD power prediction.
分布变化下船舶动力预测的神经符号方法
本文提出了一种神经符号预测船舶动力的方法。神经符号方法由两部分组成。第一个是神经网络部分,第二个是基于物理公式的符号部分。shift -power数据集用于评估。实验结果表明,基于物理的模块(符号部分)与神经网络模型(即集成蒙特卡罗dropout)的组合在使用R-AUC测量的不确定性估计方面取代了最先进的结果2.3%,在使用RMSE测量的离分布(OOD)示例的功率预测方面取代了3.4%。在不确定性方面,它比符号化方法高出6.3%,在OOD功率预测方面,它比符号化方法高出17.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信