Quantum Random Access Codes with Mutually Unbiased Bases in Three-Dimensional Hilbert Space

Qi Yao, Yuqian Zhou, Yaqi Dong
{"title":"Quantum Random Access Codes with Mutually Unbiased Bases in Three-Dimensional Hilbert Space","authors":"Qi Yao, Yuqian Zhou, Yaqi Dong","doi":"10.1109/QRS-C57518.2022.00081","DOIUrl":null,"url":null,"abstract":"Quantum random access codes (QRACs) are key tools for a variety of protocols in quantum information theory. This paper gives an upper bound on the guessing success probability in the classical case of random access codes using mutually unbiased bases as measurement bases in a 3-dimensional Hilbert space and gives an encoding strategy capable of exceeding the classical bound. This encoding strategy holds for both 3-1 and 4-1 QRACs. This result is useful in areas such as random number expansion.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum random access codes (QRACs) are key tools for a variety of protocols in quantum information theory. This paper gives an upper bound on the guessing success probability in the classical case of random access codes using mutually unbiased bases as measurement bases in a 3-dimensional Hilbert space and gives an encoding strategy capable of exceeding the classical bound. This encoding strategy holds for both 3-1 and 4-1 QRACs. This result is useful in areas such as random number expansion.
三维希尔伯特空间中互无偏基量子随机接入码
量子随机存取码(qrac)是量子信息理论中各种协议的关键工具。本文给出了三维Hilbert空间中以互无偏基为测量基的随机接入码的经典情况下猜测成功概率的上界,并给出了一种超越该上界的编码策略。这种编码策略适用于3-1和4-1 qrac。这个结果在随机数展开等领域很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信