Enhancing Web Page Classification via Local Co-training

Youtian Du, X. Guan, Zhongmin Cai
{"title":"Enhancing Web Page Classification via Local Co-training","authors":"Youtian Du, X. Guan, Zhongmin Cai","doi":"10.1109/ICPR.2010.712","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new multi-view semi-supervised learning algorithm called Local Co-Training(LCT). The proposed algorithm employs a set of local models with vector outputs to model the relations among examples in a local region on each view, and iteratively refines the dominant local models (i.e. the local models related to the unlabeled examples chosen for enriching the training set) using unlabeled examples by the co-training process. Compared with previous co-training style algorithms, local co-training has two advantages: firstly, it has higher classification precision by introducing local learning; secondly, only the dominant local models need to be updated, which significantly decreases the computational load. Experiments on WebKB and Cora datasets demonstrate that LCT algorithm can effectively exploit unlabeled data to improve the performance of web page classification.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we propose a new multi-view semi-supervised learning algorithm called Local Co-Training(LCT). The proposed algorithm employs a set of local models with vector outputs to model the relations among examples in a local region on each view, and iteratively refines the dominant local models (i.e. the local models related to the unlabeled examples chosen for enriching the training set) using unlabeled examples by the co-training process. Compared with previous co-training style algorithms, local co-training has two advantages: firstly, it has higher classification precision by introducing local learning; secondly, only the dominant local models need to be updated, which significantly decreases the computational load. Experiments on WebKB and Cora datasets demonstrate that LCT algorithm can effectively exploit unlabeled data to improve the performance of web page classification.
通过局部协同训练增强网页分类
本文提出了一种新的多视图半监督学习算法,称为局部协同训练(LCT)。该算法采用一组具有向量输出的局部模型,在每个视图上对局部区域内的样例之间的关系进行建模,并通过共训练过程,利用未标记的样例迭代地改进优势局部模型(即与为丰富训练集而选择的未标记样例相关的局部模型)。与以前的协同训练算法相比,局部协同训练具有两个优点:首先,通过引入局部学习,具有更高的分类精度;其次,只需要更新占主导地位的局部模型,这大大降低了计算量。在WebKB和Cora数据集上的实验表明,LCT算法可以有效地利用未标记数据来提高网页分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信