Clustering with Quantitative User Preferences on Attributes

Adnan El Moussawi, A. Cheriat, A. Giacometti, Nicolas Labroche, Arnaud Soulet
{"title":"Clustering with Quantitative User Preferences on Attributes","authors":"Adnan El Moussawi, A. Cheriat, A. Giacometti, Nicolas Labroche, Arnaud Soulet","doi":"10.1109/ICTAI.2016.0065","DOIUrl":null,"url":null,"abstract":"This paper proposes a new semi-supervised clustering framework to represent and integrate quantitative preferences on attributes. A new metric learning algorithm is derived that achieves a compromise clustering between a data-driven and a user-driven solution and converges with a good complexity. We observe experimentally that the addition of preferences may be essential to achieve a better clustering. We also show that our approach performs better than the state-of-the art algorithms.","PeriodicalId":245697,"journal":{"name":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2016.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a new semi-supervised clustering framework to represent and integrate quantitative preferences on attributes. A new metric learning algorithm is derived that achieves a compromise clustering between a data-driven and a user-driven solution and converges with a good complexity. We observe experimentally that the addition of preferences may be essential to achieve a better clustering. We also show that our approach performs better than the state-of-the art algorithms.
基于属性的定量用户偏好聚类
本文提出了一种新的半监督聚类框架来表示和集成属性上的定量偏好。提出了一种新的度量学习算法,实现了数据驱动和用户驱动之间的折衷聚类,并以较好的复杂度收敛。我们通过实验观察到,添加偏好可能是实现更好聚类的必要条件。我们还表明,我们的方法比最先进的算法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信