Conditional Average Treatment Effects and Decision Making

M. Samano
{"title":"Conditional Average Treatment Effects and Decision Making","authors":"M. Samano","doi":"10.2139/ssrn.2388364","DOIUrl":null,"url":null,"abstract":"This paper develops a decision making empirical method to evaluate welfare programs accounting for heterogeneity of impacts. We find outcome predictive distributions for different subgroups of the population and use a characterization of second order stochastic dominance to give a policy recommendation conditional on covariates with minimal requirements on the social planner's utility function. Further, we can estimate quantile treatment effects within subgroups of the population. We apply this method to the Connecticut's Jobs First program and find subgroups for which the program did not maximize welfare even though some statistics may suggest the opposite and vice-versa.","PeriodicalId":341058,"journal":{"name":"ERN: Primary Taxonomy (Topic)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Primary Taxonomy (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2388364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops a decision making empirical method to evaluate welfare programs accounting for heterogeneity of impacts. We find outcome predictive distributions for different subgroups of the population and use a characterization of second order stochastic dominance to give a policy recommendation conditional on covariates with minimal requirements on the social planner's utility function. Further, we can estimate quantile treatment effects within subgroups of the population. We apply this method to the Connecticut's Jobs First program and find subgroups for which the program did not maximize welfare even though some statistics may suggest the opposite and vice-versa.
条件平均治疗效果与决策
本文发展了一种考虑影响异质性的福利项目决策实证方法。我们发现了人口中不同亚群的结果预测分布,并使用二阶随机优势的特征来给出以协变量为条件的政策建议,同时对社会规划者的效用函数要求最低。此外,我们可以在人群的亚组中估计分位数治疗效果。我们将这种方法应用于康涅狄格州的就业优先计划,并找到该计划没有最大化福利的子群体,尽管一些统计数据可能表明相反,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信