Deterministic compressed-sensing matrix from grassmannian matrix: Application to speech processing

V. Abrol, Pulkit Sharma, S. Budhiraja
{"title":"Deterministic compressed-sensing matrix from grassmannian matrix: Application to speech processing","authors":"V. Abrol, Pulkit Sharma, S. Budhiraja","doi":"10.1109/IADCC.2013.6514392","DOIUrl":null,"url":null,"abstract":"Reconstruction of a signal based on Compressed Sensing (CS) framework relies on the knowledge of the sparse basis & measurement matrix used for sensing. While most of the studies so far focus on the prominent random Gaussian, Bernoulli or Fourier matrices, we have proposed construction of efficient sensing matrix we call Grassgram Matrix using Grassmannian matrices. This work shows how to construct effective deterministic sensing matrices for any known sparse basis which can fulfill incoherence or RIP conditions with high probability. The performance of proposed approach is evaluated for speech signals. Our results shows that these deterministic matrices out performs other popular matrices.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Reconstruction of a signal based on Compressed Sensing (CS) framework relies on the knowledge of the sparse basis & measurement matrix used for sensing. While most of the studies so far focus on the prominent random Gaussian, Bernoulli or Fourier matrices, we have proposed construction of efficient sensing matrix we call Grassgram Matrix using Grassmannian matrices. This work shows how to construct effective deterministic sensing matrices for any known sparse basis which can fulfill incoherence or RIP conditions with high probability. The performance of proposed approach is evaluated for speech signals. Our results shows that these deterministic matrices out performs other popular matrices.
基于格拉斯曼矩阵的确定性压缩感知矩阵:在语音处理中的应用
基于压缩感知(CS)框架的信号重构依赖于用于感知的稀疏基和测量矩阵的知识。到目前为止,大多数研究都集中在突出的随机高斯矩阵,伯努利矩阵或傅立叶矩阵上,我们提出了使用格拉斯曼矩阵构建高效的传感矩阵,我们称之为格拉斯曼矩阵。这项工作展示了如何为任何已知的稀疏基构建有效的确定性感知矩阵,该矩阵可以高概率地满足非相干或RIP条件。最后对该方法在语音信号下的性能进行了评价。我们的结果表明,这些确定性矩阵优于其他流行的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信