DSA-PR: Discrete Soft Biometric Attribute-Based Person Retrieval in Surveillance Videos

Hiren Galiyawala, M. Raval, Dhyey Savaliya
{"title":"DSA-PR: Discrete Soft Biometric Attribute-Based Person Retrieval in Surveillance Videos","authors":"Hiren Galiyawala, M. Raval, Dhyey Savaliya","doi":"10.1109/AVSS52988.2021.9663775","DOIUrl":null,"url":null,"abstract":"Physical characteristics or soft biometrics are visually perceptible aspects of a human body. Noticeable attributes like build, height, complexion, clothes help with the development of a human surveillance system. The paper proposes Discrete Soft biometric Attribute-based Person Retrieval (DSA-PR) from a video using height, gender, torso (clothes) color-1, torso color-2, and torso (clothes) type given in a textual query. The DSA-PR uses Mask R-CNN for semantic segmentation and ResNet-50 for attribute classification. Height is estimated using the Tsai camera calibration method. DSA-PR weighs attributes and fuses their probability to generate a final score for each detected person. The proposed approach achieves an average Intersection-over-Union (IoU) of 0.602 and retrieval with IoU $\\ge$ 0.4 is 0.808 over the AVSS challenge II dataset which works out to 5.8% and 2.02% above the state-of-the-art techniques respectively.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Physical characteristics or soft biometrics are visually perceptible aspects of a human body. Noticeable attributes like build, height, complexion, clothes help with the development of a human surveillance system. The paper proposes Discrete Soft biometric Attribute-based Person Retrieval (DSA-PR) from a video using height, gender, torso (clothes) color-1, torso color-2, and torso (clothes) type given in a textual query. The DSA-PR uses Mask R-CNN for semantic segmentation and ResNet-50 for attribute classification. Height is estimated using the Tsai camera calibration method. DSA-PR weighs attributes and fuses their probability to generate a final score for each detected person. The proposed approach achieves an average Intersection-over-Union (IoU) of 0.602 and retrieval with IoU $\ge$ 0.4 is 0.808 over the AVSS challenge II dataset which works out to 5.8% and 2.02% above the state-of-the-art techniques respectively.
DSA-PR:基于离散软生物特征属性的监控视频人物检索
物理特征或软生物特征是人体在视觉上可感知的方面。诸如身材、身高、肤色、衣着等明显的特征有助于人类监控系统的发展。本文利用文本查询中给出的身高、性别、躯干(衣服)颜色-1、躯干(衣服)颜色-2和躯干(衣服)类型,提出了基于离散软生物特征属性的视频人物检索(DSA-PR)方法。DSA-PR使用Mask R-CNN进行语义分割,使用ResNet-50进行属性分类。高度用蔡氏相机标定法估计。DSA-PR衡量属性并融合它们的概率,为每个被检测到的人生成最终得分。与AVSS挑战II数据集相比,该方法实现了0.602的平均交叉点-联合(IoU), IoU $\ge$ 0.4的检索值为0.808,分别比现有技术高出5.8%和2.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信