Multimedia applications: beyond similarity searches

John R. Smith, D. Doermann, Amarnath Gupta, J. Goldstein, U. Shaft, N. Ratha
{"title":"Multimedia applications: beyond similarity searches","authors":"John R. Smith, D. Doermann, Amarnath Gupta, J. Goldstein, U. Shaft, N. Ratha","doi":"10.1145/1160939.1160957","DOIUrl":null,"url":null,"abstract":"Relational database systems solve many of the traditional problems for processing of structured data. However, unstructured data in the form of images, video, audio and multimedia is growing at a tremendous rate and introduces new requirements that are not met by today's database engines. One well known example is content-based retrieval that involves similarity searching and indexing in high-dimensional feature spaces. In addition there has been much recent focus on applying machine learning techniques involving semantics modeling, spatio-temporal indexing, multi-modal (audio-, visual-, textual-) integration and relevance feedback searching.","PeriodicalId":346313,"journal":{"name":"Computer Vision meets Databases","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision meets Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1160939.1160957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relational database systems solve many of the traditional problems for processing of structured data. However, unstructured data in the form of images, video, audio and multimedia is growing at a tremendous rate and introduces new requirements that are not met by today's database engines. One well known example is content-based retrieval that involves similarity searching and indexing in high-dimensional feature spaces. In addition there has been much recent focus on applying machine learning techniques involving semantics modeling, spatio-temporal indexing, multi-modal (audio-, visual-, textual-) integration and relevance feedback searching.
多媒体应用:超越相似性搜索
关系数据库系统解决了许多传统的结构化数据处理问题。然而,图像、视频、音频和多媒体等形式的非结构化数据正在以惊人的速度增长,并引入了当今数据库引擎无法满足的新要求。一个众所周知的例子是基于内容的检索,它涉及高维特征空间中的相似性搜索和索引。此外,最近也有很多关注于应用机器学习技术,包括语义建模、时空索引、多模态(音频、视觉、文本)集成和相关反馈搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信