{"title":"Decoding of quasi-cyclic LDPC codes with section-wise cyclic structure","authors":"Juane Li, Keke Liu, Shu Lin, K. Abdel-Ghaffar","doi":"10.1109/ITA.2014.6804221","DOIUrl":null,"url":null,"abstract":"Presented in this paper is a reduced-complexity iterative decoding scheme for quasi-cyclic (QC) LDPC codes. This decoding scheme is devised based on the section-wise cyclic structure of the parity-check matrix of a QC-LDPC code. Using this decoding scheme, the hardware implementation complexity of a QC-LDPC decoder can be significantly reduced without performance degradation. A high-rate QC-LDPC code that can achieve a very low error-rate without a visible error-floor is used to demonstrate the effectiveness of the proposed decoding scheme. Also presented in this paper are two other high-rate QC-LDPC codes and a method for constructing rate -1/2 QC-LDPC codes whose Tanner graphs have girth 8. All the codes constructed perform well with low error-floor using the proposed decoding scheme.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Presented in this paper is a reduced-complexity iterative decoding scheme for quasi-cyclic (QC) LDPC codes. This decoding scheme is devised based on the section-wise cyclic structure of the parity-check matrix of a QC-LDPC code. Using this decoding scheme, the hardware implementation complexity of a QC-LDPC decoder can be significantly reduced without performance degradation. A high-rate QC-LDPC code that can achieve a very low error-rate without a visible error-floor is used to demonstrate the effectiveness of the proposed decoding scheme. Also presented in this paper are two other high-rate QC-LDPC codes and a method for constructing rate -1/2 QC-LDPC codes whose Tanner graphs have girth 8. All the codes constructed perform well with low error-floor using the proposed decoding scheme.