{"title":"Zero-Shot Style Transfer for Multimodal Data-Driven Gesture Synthesis","authors":"Mireille Fares, C. Pelachaud, Nicolas Obin","doi":"10.1109/FG57933.2023.10042658","DOIUrl":null,"url":null,"abstract":"We propose a multimodal speech driven approach to generate 2D upper-body gestures for virtual agents, in the communicative style of different speakers, seen or unseen by our model during training. Upper-body gestures of a source speaker are generated based on the content of his/her multimodal data - speech acoustics and text semantics. The synthesized source speaker's gestures are conditioned on the multimodal style representation of the target speaker. Our approach is zero-shot, and can generalize the style transfer to new unseen speakers, without any additional training. An objective evaluation is conducted to validate our approach.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a multimodal speech driven approach to generate 2D upper-body gestures for virtual agents, in the communicative style of different speakers, seen or unseen by our model during training. Upper-body gestures of a source speaker are generated based on the content of his/her multimodal data - speech acoustics and text semantics. The synthesized source speaker's gestures are conditioned on the multimodal style representation of the target speaker. Our approach is zero-shot, and can generalize the style transfer to new unseen speakers, without any additional training. An objective evaluation is conducted to validate our approach.