Counterfactually Augmented Data and Unintended Bias: The Case of Sexism and Hate Speech Detection

Indira Sen, Mattia Samory, Claudia Wagner, Isabelle Augenstein
{"title":"Counterfactually Augmented Data and Unintended Bias: The Case of Sexism and Hate Speech Detection","authors":"Indira Sen, Mattia Samory, Claudia Wagner, Isabelle Augenstein","doi":"10.48550/arXiv.2205.04238","DOIUrl":null,"url":null,"abstract":"Counterfactually Augmented Data (CAD) aims to improve out-of-domain generalizability, an indicator of model robustness. The improvement is credited to promoting core features of the construct over spurious artifacts that happen to correlate with it. Yet, over-relying on core features may lead to unintended model bias. Especially, construct-driven CAD—perturbations of core features—may induce models to ignore the context in which core features are used. Here, we test models for sexism and hate speech detection on challenging data: non-hate and non-sexist usage of identity and gendered terms. On these hard cases, models trained on CAD, especially construct-driven CAD, show higher false positive rates than models trained on the original, unperturbed data. Using a diverse set of CAD—construct-driven and construct-agnostic—reduces such unintended bias.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.04238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Counterfactually Augmented Data (CAD) aims to improve out-of-domain generalizability, an indicator of model robustness. The improvement is credited to promoting core features of the construct over spurious artifacts that happen to correlate with it. Yet, over-relying on core features may lead to unintended model bias. Especially, construct-driven CAD—perturbations of core features—may induce models to ignore the context in which core features are used. Here, we test models for sexism and hate speech detection on challenging data: non-hate and non-sexist usage of identity and gendered terms. On these hard cases, models trained on CAD, especially construct-driven CAD, show higher false positive rates than models trained on the original, unperturbed data. Using a diverse set of CAD—construct-driven and construct-agnostic—reduces such unintended bias.
反事实增强数据和意外偏见:性别歧视和仇恨言论检测的案例
反事实增强数据(CAD)旨在提高域外泛化性,这是模型鲁棒性的一个指标。这种改进归功于提升结构的核心功能,而不是碰巧与之相关的虚假工件。然而,过度依赖核心特征可能会导致意想不到的模型偏差。特别是,构造驱动的cad -核心特征的扰动-可能导致模型忽略使用核心特征的上下文。在这里,我们在具有挑战性的数据上测试性别歧视和仇恨言论检测模型:非仇恨和非性别歧视使用身份和性别术语。在这些困难的情况下,在CAD上训练的模型,特别是结构驱动的CAD,比在原始的、未受干扰的数据上训练的模型显示出更高的假阳性率。使用一组不同的cad -结构驱动和结构不可知论-减少了这种意想不到的偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信