Robust front-end based on MVA processing for Arabic speech recognition

Elhem Techini, Z. Sakka, M. Bouhlel
{"title":"Robust front-end based on MVA processing for Arabic speech recognition","authors":"Elhem Techini, Z. Sakka, M. Bouhlel","doi":"10.1109/ICEMIS.2017.8273064","DOIUrl":null,"url":null,"abstract":"This paper presents a noise robust technique for arabic automatic speech recognition engine. The technique is based on Cepstral Mean and Variance Normalization (CMVN) plus Auto Regressive Moving Average (ARMA) filtering which is called MVA. MVA used as a post-processing module to Mel Frequency Cepstral Coefficients (MFCC), Relative Spectral-Perceptual Linear Prediction (RASTA-PLP) and Power Normalized Cepstral Coefficients (PNCC) features to improve the recognition accuracy. While an isolated Arabic word engine was designed and developed using the Hidden Markov Model (HMM) to perform the recognition process at the back-end. Experimental results on the Arabic database demonstrate that our method provides substantial improvements in recognition accuracy for all features. The results also demonstrate that RASTA-PLP outperforms PNCC and MFCC features for word correction and word accuracy.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a noise robust technique for arabic automatic speech recognition engine. The technique is based on Cepstral Mean and Variance Normalization (CMVN) plus Auto Regressive Moving Average (ARMA) filtering which is called MVA. MVA used as a post-processing module to Mel Frequency Cepstral Coefficients (MFCC), Relative Spectral-Perceptual Linear Prediction (RASTA-PLP) and Power Normalized Cepstral Coefficients (PNCC) features to improve the recognition accuracy. While an isolated Arabic word engine was designed and developed using the Hidden Markov Model (HMM) to perform the recognition process at the back-end. Experimental results on the Arabic database demonstrate that our method provides substantial improvements in recognition accuracy for all features. The results also demonstrate that RASTA-PLP outperforms PNCC and MFCC features for word correction and word accuracy.
基于MVA处理的阿拉伯语语音识别鲁棒前端
提出了一种用于阿拉伯语自动语音识别引擎的噪声鲁棒技术。该技术基于倒谱均值和方差归一化(CMVN)和自回归移动平均(ARMA)滤波,称为MVA。MVA作为后处理模块对Mel频谱倒谱系数(MFCC)、相对频谱感知线性预测(RASTA-PLP)和功率归一化倒谱系数(PNCC)特征进行处理,提高识别精度。同时,利用隐马尔可夫模型(HMM)设计并开发了一个孤立的阿拉伯语词引擎,在后端执行识别过程。在阿拉伯文数据库上的实验结果表明,我们的方法对所有特征的识别精度都有很大的提高。结果还表明,RASTA-PLP在单词更正和单词准确性方面优于PNCC和MFCC特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信