Personality Prediction of Social Network Users

Chao Li, Jiale Wan, Bo Wang
{"title":"Personality Prediction of Social Network Users","authors":"Chao Li, Jiale Wan, Bo Wang","doi":"10.1109/DCABES.2017.25","DOIUrl":null,"url":null,"abstract":"Through weibo users, we extract social data and questionnaire, and focus on how to use the user text information to predict their personality characteristics. We use the correlation analysis and principal component analysis to select the user information, and then use the multiple regression model, the gray prediction model and the multitasking model to predict and analyze the results. It is found that MAE values of the gray prediction are better than the multiple regression model Multi-task model, the overall effect of the prediction between 0.8 and 0.9, the overall accuracy of good prediction. This shows that gray prediction in the user's personality prediction shows a good generalization and non-linear ability.","PeriodicalId":446641,"journal":{"name":"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Through weibo users, we extract social data and questionnaire, and focus on how to use the user text information to predict their personality characteristics. We use the correlation analysis and principal component analysis to select the user information, and then use the multiple regression model, the gray prediction model and the multitasking model to predict and analyze the results. It is found that MAE values of the gray prediction are better than the multiple regression model Multi-task model, the overall effect of the prediction between 0.8 and 0.9, the overall accuracy of good prediction. This shows that gray prediction in the user's personality prediction shows a good generalization and non-linear ability.
社交网络用户的人格预测
通过微博用户提取社交数据和问卷,重点研究如何利用用户文本信息预测其个性特征。我们利用关联分析和主成分分析对用户信息进行筛选,然后运用多元回归模型、灰色预测模型和多任务模型对结果进行预测和分析。研究发现,灰色预测的MAE值优于多元回归模型的多任务模型,整体预测效果在0.8 ~ 0.9之间,整体预测精度较好。这说明灰色预测在用户性格预测中表现出较好的泛化能力和非线性能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信