Stable Poiseuille flow transfer for a Navier-Stokes system

R. Vázquez, E. Trélat, J. Coron
{"title":"Stable Poiseuille flow transfer for a Navier-Stokes system","authors":"R. Vázquez, E. Trélat, J. Coron","doi":"10.1109/ACC.2006.1655450","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating and tracking a trajectory between two arbitrary parabolic profiles of a periodic 2D channel flow, which is linearly unstable for high Reynolds numbers. Also known as the Poisseuille flow, this problem is frequently cited as a paradigm for transition to turbulence. Our approach consists in generating an exact trajectory of the nonlinear system that approaches exponentially the objective profile. A boundary control law guarantees then that the error between the state and the trajectory decays exponentially in the L2 norm. The result is first proved for the linearized Stokes equations, then shown to hold for the nonlinear Navier-Stokes system","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1655450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of generating and tracking a trajectory between two arbitrary parabolic profiles of a periodic 2D channel flow, which is linearly unstable for high Reynolds numbers. Also known as the Poisseuille flow, this problem is frequently cited as a paradigm for transition to turbulence. Our approach consists in generating an exact trajectory of the nonlinear system that approaches exponentially the objective profile. A boundary control law guarantees then that the error between the state and the trajectory decays exponentially in the L2 norm. The result is first proved for the linearized Stokes equations, then shown to hold for the nonlinear Navier-Stokes system
Navier-Stokes系统的稳定泊泽维尔流传递
考虑高雷诺数线性不稳定的周期二维通道流的两个任意抛物型之间的轨迹生成和跟踪问题。也被称为泊塞维尔流,这个问题经常被引用作为过渡到湍流的范例。我们的方法包括生成非线性系统的精确轨迹,该轨迹以指数方式接近客观轮廓。边界控制律保证状态和轨迹之间的误差在L2范数中呈指数衰减。首先对线性化的Stokes方程证明了这一结果,然后对非线性Navier-Stokes系统证明了这一结果是成立的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信